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ABSTRACT

Jasper A, Pozzebon–Silva Â, Carniere JS & Uhl D 2021. Palaeozoic and Mesozoic palaeo–wildfires: An overview on advances 
in the 21st Century. Journal of Palaeosciences 70(2021): 159–171.

Fire is a major driver for the evolution of biodiversity throughout the Phanerozoic and occurs in continental palaeoenvironments 
since the advent of the first land plants in the Silurian. The detection of palaeo–wildfire events can be based on different proxies, 
and charcoal is widely accepted as the most reliable evidence for such events in sedimentary layers. Although the identification 
of sedimentary charcoal as the product of incomplete combustion was the subject of controversial scientific discussions, 
palaeobotanical data can be used to confirm the pyrogenic origin of such material. In an overview on Palaeozoic and Mesozoic 
charcoal remains, differences in the number of published records can be detected for individual periods; including phases with both, 
lower (Silurian, Triassic, Jurassic) and higher (Devonian, Carboniferous, Permian, Cretaceous) numbers of published evidences 
for palaeo–wildfires. With the aim to discuss selected advances in palaeo–wildfire studies since the beginning of the 21st Century, 
we present an overview on the published occurrences of charcoal for an interval from the Silurian up to the Cretaceous. It was 
possible to confirm that a lack of detailed palaeobotanical data on the subject is detected in some intervals and regions, despite the 
high potential of occurrences detected in form of pyrogenic inertinites by coal petrographic studies. Although such temporal and 
regional gaps can be explained by taphonomic and palaeoenvironmental biases, it also indicates the scientific potential of future 
studies in diverse palaeogeographical and temporal settings.

Key–words—Palaeo–wildfire, Charcoal, Pyrogenic Inertinites, Silurian, Devonian, Carboniferous, Permian, Triassic, 
Jurassic, Cretaceous.

INTRODUCTION

DURING the last years wildfires have become a focus 
of public interest, as in many regions worldwide the 

intensity and frequencies of such wildfires increases, with often 
devastating effects on human settlements and economies, but 
also on certain ecosystems (e.g. Cochrane, 2019; McLauchlan 
et al., 2020; dos Reis et al., 2021). However, in the public 
and political perception of wildfires it is often neglected that 
wildfires are an integral part of many ecosystems, with more or 
less frequent wildfires being essential for the reproduction and 
survival of many plants and animals (e.g. Scott et al., 2014). 
The complex interdependencies between fires on the one 
side and many ecosystems and organisms on the other side, 
evolved over millions of years, ever since the first wildfires 
occurred in the Late Silurian (Glasspool et al., 2004).

For a long time, most geoscientists ignored the 
widespread and sometimes abundant evidence for such 
palaeo–wildfires, although the first studies interpreting fossil 
charcoal (aka fusain or pyrogenic inertinites when occurring in 
coals and lignites) as direct evidence for wildfires were already 
published in the middle of the 19th Century. Probably the first 
to propose a pyrogenic origin for the coal maceral fusinite 
was the French miner Daubrée (1844). Based on the chemical 
analysis of such material from the Carboniferous of the Saar–
Coalfield in Germany (Daubrée, 1844, 1846) and the Triassic/
Jurassic of Skane in Sweden (Daubrée, 1846), he found that 
there is no difference between charcoal produced by fire and 
these macerals. From this he concluded that these macerals 
were produced by wildfires, a view that was immediately 
questioned and even ridiculed (e.g. Göppert, 1850).
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For more than a century the discussion whether fossil 
charcoal was the product of palaeo–wildfires or not went back 
and forth amongst palaeobotanists and coal–petrographers. A 
summary of this historical discussions was provided by Scott 
(1989, 2000), and although the discussion is still not fully 
settled for some scientists (e.g. Valentim et al., 2016; Wang 
et al., 2020) there seems to be a broad agreement, at least 
amongst palaeobotanists, that fossil charcoal (including most 
of the inertinite group of coal macerals) can be regarded as 
the product of palaeo–wildfires (e.g. Scott, 2000, 2010; Scott 
et al., 2014; Moroeng et al., 2018a, b; Wang et al., 2019).

In 2000, Scott published a seminal review on the 
pre–Quaternary history of fire, in which he summarized the 
knowledge about palaeo–wildfires that had accumulated at this 
time (Scott, 2000). This review sparked a broader international 
interest in pre–Quaternary wildfires, which is evidenced by 
the ever–growing number of studies published on this topic 
during the last two decades in international journals.

Here we provide a short overview of the progress that 
has been achieved in the last 20 years on selected aspects of 
our knowledge about Palaeozoic and Mesozoic wildfires. 
This overview is definitely not intended as a full–scale review 
of this topic, we just want to draw the attention of potential 
readers to some of the most interesting and important (at 
least in our opinion) aspects of the many progresses that 
palaeo–wildfire research has done during the last 20 years. 
Additionally, we point out some open questions that remain 
unanswered so far, hopefully stimulating further scientific 
interest in this topic.

PALAEOZOIC AND MESOZOIC FIRES

Since the seminal review by Scott (2000) a large 
number of studies reported the occurrence of charcoal/
fusain (including pyrogenic inertinites) and/or pyrogenic 
polyaromatic hydrocarbons (PAHs) and interpreted such 
findings as evidence for palaeo–wildfires (see below for 
more details). A number of studies has already compiled and 
analysed data for individual periods (e.g. Devonian: Lu et al., 
2021; Triassic: Abu Hamad et al., 2012; Cretaceous: Brown et 
al., 2012) or for the entire Palaeozoic (e.g. Scott & Glasspool, 
2006; Glasspool & Scott, 2010) and Mesozoic (e.g. Belcher 
& McElwain, 2008).

One aspect that has repeatedly been the focus of such 
studies, is the connection between atmospheric oxygen 
concentrations and palaeo–wildfires. Scott &Glasspool (2006) 
compared charcoal abundance from the Silurian up to the 
end of the Permian with large scale changes in Palaeozoic 
vegetation and climate. They found that the abundance of 
charcoal, interpreted as a proxy for fire occurrence and the 
diversification of fire systems, was indeed related to changes 
in atmospheric oxygen concentration during this period, as 
reconstructed by geochemical modelling, as well as with the 
increasingly complex vegetation types that developed during 

this period. Using this relationship between fire and oxygen 
through time, Glasspool & Scott (2010) compiled a dataset 
of pyrogenic inertinites in Phanerozoic coals to reconstruct 
atmospheric oxygen concentrations from the Silurian up to 
the Cenozoic.

Belcher and McElwain (2008) compiled a dataset of 
Mesozoic wildfire occurrences, using published records of 
charcoal, inertinites and PAHs, which they used in connection 
with experimental burns of modern plant material under 
different oxygen concentrations, to find the lower limits of 
atmospheric oxygen for sustaining wildfires and thus test 
the results of geochemical modelling. These authors found 
that the lower limit of atmospheric oxygen to sustain fires is 
approximately 15% (and not 12% as assumed earlier) and that 
the fossil record of wildfire is incompatible with low oxygen 
phases (10 to 12%; i.e. during the Early Triassic and the 
Jurassic), as reconstructed by different geochemical models. 
Besides these studies on atmospheric oxygen and its long–
term connection with palaeo–wildfires, also a large number 
of other experimental studies on modern plants and charcoal, 
which are not the subject of this overview, has significantly 
increased our ability to interpret the existing evidence for 
palaeo–wildfires (e.g. McParland et al., 2007; Gerards et al., 
2007; Belcher et al., 2010; Osterkamp et al., 2018). During 
the last decades also a number technical advances have been 
made that enabled new insights into palaeo–wildfires and their 
interactions with climate and environment. An example are 
studies using a combination of different proxies (i.e. charcoal, 
inertinites and/or pyrogenic PAHs) to reconstruct information 
about Palaeozoic and Mesozoic wildfires (e.g. Marynowski 
et al., 2011, 2014; Kubik et al., 2020; Murthy et al., 2021). 
Such a combined approach is very promising to provide 
comprehensive and profound information about palaeo–
wildfire, but rather complex and still mostly expensive.

Another example, relatively new to palaeo–wildfire 
research, is the usage of pre–charring decay to reconstruct 
various aspects of palaeo–wildfires (e.g. El–Atfy et al., 
2019b). The massive occurrence of charcoal with traces of 
pre–charring decay has, for example, been used by Uhl et al. 
(2019) to reconstruct a surface fire from material occurring 
at the Early Cretaceous locality Rüthen–Kallenhardt in 
Germany. Based on the extreme scarcity or even absence of 
such evidence the same authors reconstructed a crown fire for 
the nearby and more or less contemporary locality Brilon–
Nehden (Fig. 1). However, taphonomical studies on modern 
charcoal derived from decaying litter are largely missing so 
far, rendering such interpretations somewhat speculative (e.g. 
Uhl et al., 2019, 2020).

Besides such methodological advances, a major advance 
to increase our knowledge about palaeo–wildfires and their 
interactions with climate and environments through time, were 
numerous studies dealing with fossil charcoal from various 
periods and localities that enlarged our data base about such 
fires considerably. For this overview we compiled a list of 
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Fig. 1—Schematic reconstruction of two wildfire scenarios that might explain the differences regarding pre–charring decay between the charcoal accumulations 
within the fissure fills of Brilon–Nehden (crown fire) and Rüthen–Kallenhardt (surface fire), Early Cretaceous, W–Germany (from Uhl et al., 2019, 
Fig. 14).

published evidence for palaeo–wildfire in form of charcoal 
from clastic sediments, as well as inertinites (assuming that 
this equals pyrogenic inertinites; cf. Scott, 2000, 2010; Scott & 
Glasspool, 2007, Glasspool & Scott, 2010), from the Silurian 
up to the Cretaceous (Fig. 2). This compilation is based on 
previous studies that summarized charcoal records from 
diverse intervals (e.g. Glasspool et al., 2004; Diessel, 2010; 
Abu Hamad et al., 2012; Brown et al., 2012; Benício et al., 
2019a; El–Atfy et al., 2019a; Yun Xu et al., 2020; Lu et al., 
2021) and on the authors database for this paper. A selection 
of SEM images of Palaeozoic and Mesozoic charcoals is 
presented in Pl. 1.

In the following sections we summarize some selected 
advances in palaeo–wildfire research for the individual periods 
of the Palaeozoic and Mesozoic:

Silurian

The Silurian is known as the period of the advent of the 
first terrestrial plants (Taylor et al., 2009 and citations therein) 
but vegetation was very scarce and restricted to very marginal 
wet settings. Scott (2000) stated that due to this scarcity 
of vegetation it was unlikely that there was enough fuel to 
sustain larger fires that would produce enough charcoal to be 
preserved in the fossil record.
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Fig. 2—The numbers of published records of sedimentary charcoal and 
pyrogenic inertinites throughout the Palaeozoic and Mesozoic. Based 
on previous summaries by Glasspool et al. (2004)–Silurian; Lu et 
al. (2021)–Devonian; Benício et al. (2019a)–lower Permian; Abu 
Hamad et al. (2012) Permo–Triassic; Yun Xu et al. (2020)–Jurassic; 
Brown et al. (2012)–Cretaceous; El–Atfy et al. (2019a)–Cretaceous; 
and the authors database.

PLATE 1
SEM–images of Palaeozoic and Mesozoic macro–charcoals.

A. Gymnospermous charcoal, Late Pennsylvanian, Germany (from Uhl 
& Jasper, 2021).

B. Gymnospermous charcoal, Early Permian, Quitéria, RS, Brazil.
C. Needle of the conifer Ullmannia sp., Late Permian, Frankenberg, 

Germany (from Uhl & Kerp, 2003).
D. Gymnospermous charcoal, Middle Triassic, Pirmasens, S–Germany 

(from Uhl et al., 2010).

E. Gymnospermous charcoal, Late Triassic, S–Germany.
F. Agathoxylon sp., Late Jurassic, Nusplingen, S–Germany (from Uhl 

et al., 2012).
G. Fern (?) crozier, Early Cretaceous, Kallenhardt, Germany (from Uhl 

et al., 2019).
H. Pinnules of a fern, Early Cretaceous, Kallenhardt, Germany (from 

Uhl et al., 2019).

Only a few studies have so far dealt with charcoal as 
evidence for wildfires in the Silurian (Scott & Glasspool, 
2006). The oldest record of charcoal, morphologically 
resembling the rhyniophytoid Hollandophyton colliculum, 
was described by Glasspool et al. (2004) from the Platyschima 
Shale Member of the Downton Castle Formation, England. 
These findings provide evidence that wildfires, although 
probably not very widespread, affected ecosystems, as soon as 
fuel (= combustible biomass) was available on the continents.

Devonian

Dominating continent marginal ecosystems, diverse 
vascular plants emerged during the early Devonian (Taylor 
et al., 2009 and citations therein). The oldest forest consisting 
of lignophytes, meaning a diversified vascular flora providing 
abundant fuel within an individual habitat, has recently been 
described from the middle Devonian (Stein et al., 2020). 
Once fuel was present in larger quantities, the occurrence of 
wildfires became more common (e.g. Lu et al., 2021) (Fig. 2).

Scott (2000) speculated that during the mid–late 
Devonian the vegetation would have been dense and complex 
enough to sustain fires, and the oldest known charcoal reported 
by this author came from the Late Devonian. In the following 
years a number of different studies has reported the occurrence 
of Devonian charcoal (e.g. Cressler, 2001; Scott & Glasspool, 
2006; Glasspool et al., 2015; Rimmer et al., 2015; Lenton et 
al., 2016).

Recently a comprehensive summary of published 
evidence for Devonian wildfires, ranging from the Lochkovian 
up to the Upper Famennian, was presented by Lu et al. (2021). 
These authors demonstrated a strong statistical linkage 
between the diversification of land plants, i.e. lignophytes, 
and the increase of published evidence for wildfires in eastern 
Euroamerica. On the other hand, the authors demonstrated 
that the fluctuating patterns of pO2 during the Devonian do 
not match with the published records of wildfires and argue 
that fire regimes were mainly driven by fuel availability and 
not by varying pO2 during that interval (Lu et al., 2021). Like 
other studies before (Scott & Glasspool, 2006; Algeo & Ingall 
2007) these authors found a gap in the fossil record of charcoal 
during the “middle” Devonian (i.e. from the late Emsian up to 
the Givetian) with no or very few records during individual 
stages. However, the database on which this study is based, is 
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still rather small (62 occurrences of palaeo–wildfire evidence 
for a period of 60 million years) making it difficult, to draw 
undoubtable conclusions; a fact that is still also true for most 
other periods of Earth’s history.

Carboniferous

Charcoal as direct evidence for wildfires, is frequent and 
ubiquitous in many continental but also some marine deposits 
from the Carboniferous (Fig. 2), and already 20 years ago 
there was an extensive record of publications on this subject 
(Scott, 2000, and citations therein). Since than a large number 
of additional publications has dealt with fossil evidence for 
palaeo–wildfires during this period, not only dealing with 
wildfires from the widespread coal measures of the northern 
hemisphere, but also from the drier hinterland (e.g. Falcon–
Lang & Bashforth, 2005; Scott et al., 2010; Zodrow et al., 
2010, 2012; Clack et al., 2019; Uhl & Jasper, 2021).

So far almost all studies on Carboniferous wildfires come 
from the northern hemisphere, probably due to more extensive 
studies on the Carboniferous strata on this hemisphere, as 
well as a lack of fossil bearing sediments on Gondwana. The 
later was caused by widespread glaciations and by a scarcity 
or even lack of biomass/vegetation in large periglacial areas 
that would produce large quantities of charcoal which could 
have entered the fossil record.

Only recently Pennsylvanian macro–charcoal was 
described by Benício et al. (2019b) from Western Gondwana. 
An assemblage of fragmentary macro–charcoal remains 
originating from the Itararé Group, from the southern part of 
the Paraná Basin, Brazil, remains the so far only published 
direct evidence of wildfires for the entire continent during 
the Carboniferous (Benício et al., 2019b; Jasper et al., 2020).

Permian

When Scott (2000) wrote his review there were only 
very few published records dealing with fossil charcoal from 
the Permian. Although it was known for a long time, that 
many Permian coals from Gondwana had very high inertinite 
contents, it was not clear at this time, whether these inertinites 
were of pyrogenic origin or not. Due to several studies dealing 
with such inertinites in greater details in the last two decades a 
huge amount of evidence has accumulated that such inertinites 
are mostly of pyrogenic origin (e.g. Scott, 2000, 2010; Scott 
& Glasspool, 2007, Glasspool & Scott, 2010).

During the last decades our knowledge about Permian 
wildfires has increased considerably, not only with regard 
to pyrogenic inertinites, and a short review of the literature 
demonstrates that today more studies on Permian palaeo–
wildfires have been published than for any other part of the 
Palaeozoic and Mesozoic (Fig. 2). Since 2000 large number 
of studies has dealt with previously unknown or undescribed 
occurrences of fossil charcoal from almost all parts of the 

world, including Western and Southern Europe (e.g. Uhl 
& Kerp, 2003; Uhl et al., 2004, 2012a), North–America 
(e.g. DiMichele et al., 2004), Russia (e.g. Hudspith et al., 
2012) and China (e.g. Xiao et al., 2020), but also large parts 
of the former supercontinent Gondwana, like the Middle 
East (e.g. Uhl et al., 2007), Brazil (e.g. Jasper et al., 2008, 
2011a, 2013, Degani–Schmidt et al., 2015; Manfroi et al. 
2015b; Kauffmann et al., 2016; Benício et al., 2019a; Kubik 
et al., 2020), India (e.g. Jasper et al., 2012, 2013, 2016a, b, 
2017; Murthy et al., 2021); South Africa (e.g. Glasspool, 
2000, 2003a, b) and Antarctica (e.g. Holdgate et al., 2005; 
Slater et al., 2015) (Fig. 3). A number of these studies dealt 
with macro–charcoal and inertinites from coal deposits (e.g. 
Hudspith et al., 2012; Jasper et al., 2017; Benício et al., 2019a) 
adding further convincing evidence that the inertinites in 
these coals represent fossil charcoal that has been produced 
by wildfires (Fig. 4).

Based on the large number of records and the abundance 
of charcoal in individual deposits it emerged that the Permian, 
was indeed a high–fire phase of Earth’s history (e.g. Jasper et 
al., 2013; 2020). One of the reasons for this, was a very high 
atmospheric pO2 during most of the Permian (e.g. Glasspool & 
Scott, 2010). With such an elevated atmospheric pO2, probably 
exceeding 28% in some stages (Glasspool & Scott, 2010), 
even wet plant parts could easily be ignited and very large 
fires could be sustained in a wide range of terrestrial habitats 
(e.g. Jasper et al., 2017; Benício et al., 2019a).

During the latter part of the Permian atmospheric pO2 
dropped according to geochemical modelling, and Abu Hamad 
et al. (2012), in their review of Permian and Triassic wildfire 
occurrences, showed a kind of correlation between changes 
in pO2 and wildfire evidence. Although not yet clear, in the 
last few years there is increasing evidence that fires were 
involved in the widespread destruction and finally collapse 
of continental ecosystems during the P/T extinction event. 
At the moment it is nonetheless clear that wildfires occurred 
more or less regularly or even increased in certain terrestrial 
ecosystems just prior to the Permian–Triassic boundary 
event(s) (e.g. Shen et al., 2011; Yan et al., 2016, 2019; 
Arzadún et al., 2017; Shivanna et al., 2017; Sun et al., 2017; 
Feng et al., 2020; Vajda et al., 2020; Cai et al., 2021).

Triassic

Scott (2000) stated that there are relatively few records 
of Triassic charcoal, citing only a few occurrences from the 
Rhaetian–Liassic, as well as from Chinese coal seams and 
the “Petrified Forest” in Arizona. Also for this period, again 
sparked by the seminal review of Scott (2000), the number 
of published records of fossil charcoal increased during the 
following decade (Fig. 2).

Abu Hamad et al. (2012) published a review of published 
evidence for Triassic wildfires demonstrating that there are 
considerably less reports on intertinites from Triassic coals 
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Fig. 3—Global distribution of sedimentary charcoal and inertinites during the Cisuralian. Dots represent the number of described charcoal occurrences by 
basin and diameter varies according to scale (from Benício et al., 2019a, Fig. 5).

than from Permian coals, but approximately the same number 
of studies on charcoal from clastic sediments. This is not 
surprising, as there are considerably less Triassic than Permian 
coal deposits, with even a global coal–gap lasting from the 
earliest Induan up to the Carnian (e.g. Retallack et al., 1996). 
There seems to be an earliest Triassic (i.e. Induan) charcoal 
gap and a more or less steady increase of the published 
evidence for micro–as well as macro–charcoal in clastic 
sediments from the Olenekian onwards, especially during the 
Middle and Late Triassic (e.g. Belcher & McElwain, 2008; 
Abu Hamad et al., 2012). The so far oldest post–Permian 
macro–charcoal (being of coniferous affinity) is known from 
the Anisian Voltzia–sandstone of SW–Germany (Uhl et al., 
2010). These strata are well known to include the first diverse 
fossil macro–flora after the Permian–Triassic mass–extinction 
event (e.g. Grauvogel–Stamm & Ash, 2005).

Since this overview by Abu Hamad et al. (2012) a 
number of additional studies on macro–charcoal has been 
published from Europe (e.g. Havlik et al., 2013; Uhl et al., 
2014; Kubik et al., 2015; Philipe et al., 2015), the Middle East 
(e.g. Abu Hamad et al., 2013, 2014), Antarctica (e.g. Kumar 
et al., 2011) and South America (e.g. Cardoso et al., 2018). 

These studies demonstrate that charcoal occurs globally in 
Triassic deposits, which are suitable for the preservation of 
this kind of fossil. However, charcoal seems to be extremely 
rare or completely absent in the globally widespread Early and 
Middle Triassic red–beds, which formed during this period in 
several regions on the supercontinent Pangaea. It is, however, 
difficult to assess whether this is due to a real rarity of wildfires 
during this period, or (more likely in the view of the authors) 
to various taphonomic factors. Such factors include, amongst 
others, a low preservation potential of charcoal in such red 
beds (e.g. Skjemstad et al., 1996; Uhl et al., 2004, 2010), a low 
amount of combustible biomass (=fuel) and human bias, i.e. 
neglecting charcoal as an interesting type of fossil evidence 
(cf. Uhl et al., 2010; Abu Hamad et al., 2012).

A few studies have discussed a potential connection 
between the end–Triassic mass extinction event, caused 
by the eruption of the CAMP, and an increase in wildfires 
during the Triassic–Jurassic transition (e.g. Belcher et al., 
2010). However, at the moment it is not yet clear whether 
these studies can be generalized for larger regions or whether 
they just report more local changes of fire regimes and/or 
frequencies.
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Jurassic

Already Daubrée (1846) reported charcoal from late 
Triassic–early Jurassic strata of Sweden, and Scott (2000) 
summarized a large number of studies, which had already 
dealt with Jurassic charcoal and wildfires up to this time. Since 
then, a number of additional studies dealing in more or less 
detail with Jurassic evidence of wildfires (e.g. Hesselbo et al., 
2003; Belcher & McElwain, 2008; Marynowski & Simoneit, 
2009; Marynowski et al., 2011; Uhl et al., 2012b, c; Tanner 
et al., 2012; Yun et al. 2020; Zhang et al., 2020).

Interestingly a number of geochemical models 
reconstructed very low atmospheric pO2 during large parts 
of the Jurassic (e.g. Falkowski, 2005; Berner, 2009; Tappert 
et al., 2013), which would have led to a largely reduced 
flammability and wildfire activity. The above mentioned 
frequent and partly abundant fossil evidence for wildfires 
contradicts these models, highlighting the importance of 
palaeo–wildfire research for testing the reliability of such 
models (Belcher & McElwain, 2008).

Cretaceous

From a palaeobotanical point of view, the Cretaceous is 
regarded as a period of major changes, with the appearance 
of angiosperms during the Early Cretaceous and their rapid 
radiation and spread over the entire globe until they dominated 
many ecosystems worldwide during the Late Cretaceous 
(e.g. Wing & Tiffney, 1987; Wing et al., 1987; Friis et al., 
2011; Coiffard et al., 2012). A large number of studies has 
dealt with Cretaceous wildfires (cf., Scott, 2000; Brown et 
al., 2012) (Fig. 2) and in general this period is regarded as 
one of the high–fire periods of Earth’s history (e.g. Brown et 
al., 2012; Scott et al., 2014). Several workers have studied 
macro–charcoal in Cretaceous localities otherwise known for 
their abundance of dinosaurs, also demonstrating that these 
animals often lived in fiery environments (e.g. Brown et al., 
2013; Vajda et al., 2013; El Atfy et al., 2019a; Uhl, 2020; El 
Atfy & Uhl, 2021).

A review about Cretaceous wildfires by Brown et 
al. (2012) found a bias towards studies on the northern 
hemisphere. A considerable number of studies has dealt with 
charcoal and palaeo–wildfires from the northern hemisphere 
since then, adding more evidence for a ubiquitous occurrence 
of wildfires on the northern hemisphere (e.g. Falcon–Lang 
et al., 2012; Girard et al., 2013; Fletcher et al., 2014; Uhl et 
al., 2019). However, several studies have also demonstrated 
that fires were probably equally frequent on the southern 
hemisphere, e.g. Brazil (e.g. dos Santos et al. 2016; de Lima 
et al., 2019, 2021), Jordan (e.g. Abu Hamad et al., 2016a, b), 
India (e.g. Kumar, 2018; Mohabey et al., 2018), Egypt (e.g. 
El Atfy et al., 2016, 2019a), South Africa (e.g. Muir et al., 

2015) and Antarctica (e.g. Manfroi et al., 2015a; de Lima et 
al., in press).

During the last decades a number of studies have dealt 
with the influence of wildfires on the evolution of several 
plant groups during the Cretaceous, presenting evidence that 
a number of modern plant lineages and vegetation types, 
adapted to fire, already originated in the high–fire world of the 
Cretaceous (e.g. He et al., 2012, 2016; Lamont & He, 2017). 
However, there is also increasing evidence that wildfires may 
have influenced the early evolution of angiosperms in general 
and that the radiation and spread of early angiosperms may 
have influenced fire regimes (e.g. Bond & Scott, 2010; Brown 
et al., 2012; Belcher & Hudspith, 2017). Angiosperms can 
have much higher productivities and reproduction rates than 
other plant groups, leading to faster accumulation of fuels and 
thus higher fire frequencies, especially under high atmospheric 
oxygen conditions and globally warmer temperatures as 
reconstructed for large parts of the Cretaceous (e.g. Bond 
& Scott, 2010). Also physical and morphological properties 
of the radiating and spreading angiosperms altered the 
ignitability and flammability of potential fuels (e.g. Belcher 
& Hudspith, 2017). Especially angiosperm shrubs, maybe 
in connection with fern understoreys, may have contributed 
to changes of fire behaviour leading to an increased rate 
of crown fires in gymnosperm canopies, and ultimately to 
higher mortalities of trees (Belcher & Hudspith, 2017). As fire 
regimes are characterised by multiple positive and negative 
feedbacks with a variety of biological and physical parameters 
within an ecosystem, such changes must have had profound 
influences not only on angiosperms, but on entire ecosystems 
(e.g. Bond & Scott, 2010; Belcher, 2010).

But wildfires did not only affect the evolution of 
angiosperms and ecosystems during the Cretaceous they also 
preserved pristine evidence for the evolution of angiosperms 
in form of charred flowers and seeds (e.g. Scott, 2000; 
Friis et al., 2011, 2014, 2019; Schönenberger, 2005). Such 
remains provide very significant anatomical evidence for the 
evolution of early angiosperm clades and new techniques, 
like synchrotron X–ray microtomography, have provided a 
wealth of new data about the early evolution of angiosperms 
in the last decades (e.g. Friis et al., 2014, 2017, 2018). 
These techniques are, obviously, not restricted to Cretaceous 
angiosperm remains, but can be applied to charred plant 
remains, as far back as the Palaeozoic (e.g. Scott et al., 2009).

In the past several studies have suggested that massive 
wildfires have played a major role in the K/Pg extinction event 
(e.g. Wolbach et al., 1990; Robertson et al., 2013). However, 
detailed studies on fossil charcoal (e.g. Scott, 2000; Belcher 
et al., 2003, 2005), geochemical evidence (e.g. Belcher et 
al., 2009), as well as experimental (Belcher et al., 2015) and 
modelling approaches (e.g. Goldin & Melosh, 2009) have 
questioned such worldwide conflagrations in the immediate 
aftermaths of the Chixuclub impact.
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CONCLUSIONS

During the last 20 years great advances have been 
made in the research on Palaeozoic and Mesozoic palaeo–
wildfires, especially due to increased efforts to document 
wildfires occurrences, but also due to methodological and 
methodological advances. However, in several regions, 
especially on southern hemisphere continents, which were 
formerly part of the super–continent Gondwana, there are 
still many regional and temporal gaps where we still have not 
enough data to provide meaningful syntheses in space and 
time. Another “problem” are studies which do not sufficiently 
document evidence for the pyrogenic origin of putative 
charcoal they are studying, as that cannot be validated by 
other authors. It is thus strongly recommended to document 
such evidence (i.e. SEM–images of homogenized cell walls 
in the case of sedimentary charcoal) and to follow standard 
protocols for the identification of fossil charcoal (e.g. Scott, 
2000, 2010).

Finally we want to conclude this overview with a (highly 
subjective) selection of some open questions and suggestions 
for further research directions:

• Increase documentation of additional records for 
palaeo–wildfires especially for so far understudied 
regions and periods, using established procedures for 
the identification of fossil charcoal.

• Increase the database of studies on the taphonomy of 
charcoal following modern wildfires.

• What were the roles of fires in the mass extinction events 
at the P/Tr–boundary, the Tr/J–boundary and the K/
Pg–boundary?

• Why are there so few published records of charred foliage 
as compared to wood remains for most periods?

• How to avoid the potential taxa bias in the records caused 
by more or less resistance to complete plant burning?
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