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ABSTRACT

Prasad MNV, Raj Kumar M & Freitas H 2008. Rehabilitation of abandoned mine sites: connection to bioprospecting
of metal tolerant plants and phytoassistéizoremediation. The Palaeobotanist 57(3): 559-571.

Contemporary strategies for rehabilitation and remediation of abandoned mine sites and the need for bioprospecting
metal tolerant plants have been reviewed with particular emphasis on phytoassisted rhizoremediation. The key processes
involved in phytoremediation technology are (i) metal uptake, transport, accumulation and (ii) phytostabilization. Other
related applications are: erosion control of mine tailings and metals and use of environmental and industrial crops.
Phytoremediation can bi@ situ, growing, harvesting plants on a contaminated site an aesthetically pleasing process,
solar-energy driven, and passive technique. This technique is being used along with or, in some cases, in place of expensive
conventional chemical and mechanical cleanup methods. Environmental degradation due to Acid Mine Drainage and role
of aquatic macrophytes for its rehabilitation are also presented.

Key-words—Metal tolerant plants (MTP), Phytoassisted rhizoremediation, Toxic metals, Accumulators, Excluders,
Indicators, Environmental implications, Phytomanagement and Phytotechnologies.
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INTRODUCTION toxicity. Some trace elements are also non-essential, e.g. As,
Cd, Hg, Pb, etc. are extremely toxic to biota even at very low
IOGEOCHEMICAL cycling of essential and non-essentiatoncentrations.
elements in ecosystem is a complex phenomenon Metal tolerant plants (Metallophytes) are predominated
(Adriano, 2001). Al, Ca, Fe, Na, P, K, S, Si, Ti, Mg; bioelementsy members of Brassicaceae, Cyperaceae, Cunoniaceae,
viz. C, H, N and O, constitute about 99% of the element@&laryophyllaceae, Fabaceae, Flacourtiaceae, Euphorbiaceae,
composition of the environment. Elements such as As, Adamiaceae, Poaceae, Violaceae,Rlants that accumulate and
Co, Cu, Cr, Hg, Mo, Mn, Ni, Pb, Se, Zn, etc. constitute abotyper accumulate toxic metals would have the following
1% of the total elemental content of the soil, and hence aeological and environmental implications (Baker, 1981; Baker
called trace elements. The term ‘heavy metal’ for thos al, 1994a, b; Bashmaket al, 2002, 2006; Brooks, 1998;
weighing more than 5 g chsuch as Zn (7.1), Cr (7.2), Cd (8.6),Prasad, 2006 a-d).
Ni (8.7), Co (8.9), Cu (8.9), Mo (10.2), Hg (13.5) and Pb (11.4);  (a) Exhibit elemental allelopathy (elemental defense)
while Al (2.7) is a light metal; ‘As and Sn’ half-metals and ‘Se’  (b) Biogeochemical prospecting of minerals
non-metal. Some metals can occur in different valence states, (c) Occur as endemics, hot spots are mineralized belts
so that one element may be more or less toxic in different (d) Diversified applications in phytotechnologies
states. One example is Cr(lll) and the more toxic Cr(VI). Afew  (e) Pose risks to human health through food chain, when
like Cs, Hg and Ga are liquids at room temperature. Elemenrtsached out and the bioavailability is increased
viz. As, B, Cd, Cr, Cu, Hg, Ni, Pb, Se, U, V, and Zn are present Phytoremediation (use of green plants to remove, contain,
naturally in soils in low concentrations but may be elevatest render environmental contaminants harmless) is an
because of human activities, fossil fuel combustion, miningmerging biogeotechnological application based on the “green
smelting, sludge amendment to soil, fertilizer application, ariver concept”. This technology operates on the principles of
agrochemical application (Prasad, 2006a-d). At lowiogeochemical cycling. Phytoremediation projects have been
concentrations some trace elements, e.g. Cu, Cr, Mo, Ni, Saccessful for the cleanup of metal polluted/contaminated soil,
Zn, etc. are essential for healthy functioning of biota. Howevesurface water, groundwater, air and for ecological restoration
higher concentrations of these essential elements cawfelegraded mines. Extensive diversity of native and non-

Mining activities
smelting, river dredging, mine
spoils and tailings, metal
industries, etc.

Atmospheric deposition
urban refuse disposal,
pyrometallurgical industries,
automobile exhausts, fossil fuel
combustion, etc.

Industries

Heavy metals
sources in the
environment

plastics, textiles,
microelectronics, wood
preservatives, refineries,
etc.

Waste disposal
sewage sludge leachate from
landfill, fly ash disposal, etc.

Agrochemicals
Excessive use of fertilizers
and pesticides, etc.

Fig. 1—Environmental exposure of heavy metals due to mining and related technogenic activities.
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native plants have been applied in this strategy. This reviewganic contaminants harmless. This is an emerging
will focus on the recent advancements in phytoremediatidgsiogeotechnological application based on the “green liver

technology emphasizing the need for (i) biodiversitgoncept” and operates on the principles of biogeochemical
prospecting for success of this strategy, (ii) rhizospheggcling.

biotechnology. (e) Full restoration: Restoration of a site to its pre-

damaged condition.
(f) Partial restoration: Restoration of selected ecological

attributes of the site; and Creation of an alternative ecosystem

D|ffer_en_t terms have been freque_:ntly usedin the I|teratu §pe the latter though often desirable, is not to be called
for remediation of the abandoned mines. restoration.

a) Restoration: Replication of site conditions prior to .
(@) P P Mining and related technogenic sources of heavy

disturbance. tal lted i taminati d polluti fth
(b) Reclamation: Rendering a site habitable to indigenoﬂ%e al resuited in contamination and pofiution ot the

organisms. biogeosphere. The failure to rehabilitation resulted in man-

(c) Rehabilitation: Converting the metal contaminated larfg@de catastrophe, e.g. pyrite mine of Aznalco’llar in SW Spain
to a producive form which is in conformity with a prior to landMorenoet al, 2001). Several strategies have been proposed
use plan. for variety of mine spoils. Addition of organic matter and

(d) Phytoremediation: It is an environmental cleanupalcium amendments are the promising strategies.'Green
strategy in which selected green plants are employed @erridor’ or ‘Green belt’ establishment on technogenically
remove, contain, or render environmentally toxic inorganic arebntaminated and polluted sites would depend on successful

STRATEGIES OF ABANDONED MINE RECLAMATION

Mercury (Hg) Electrical Selenium (Se) Coal Arsenic (As) Production of Zinc (Zn), Brass and
apparatus manufacture, power plant fly ash pesticides, veterinary bronze alloys
electrolytic production of Cl pharmaceuticals and wood PdeUC_tIOH.
and caustic soda, paints, preservatives galvanized metal
pharmaceuticals, plastics, production,
paper products, batteries, pesticides and ink
pesticides and burning of A
coal and oil
Nickel (Ni)
Production of
Lead (Pb) battery industry, stainless steel', alloys,
fuel additives, paints, storage batteries,
herbicides manufacturing of spark plugs, magnetg
and machinery

ammunition, caulking
compounds, solders,

pigments and insecticides (

heavy metals as >
\ contamlnants and Y, Cadmium (Cd) Cd-Ni

\ poIIutants battery production,
S pigments for plastics

Silver (Ag)

Photographic, and_e_namels,

electroplating and fumicides, 'and

mirror industries electroplating and
metal coatings
Chromium (Cr)
Corrosion inhibitor,

) dyeing and tanning
Copper (Cu) Textile Aluminium (Al) Cobalt (Co), Steel and alloy| | Tin (Sn) Can industries, plating
mills, cosmetic Paper coating production, paint and production operations, alloys
manufacturing and pretreatment sludge varnish drying agent and antiseptics, defoliants
hardboard production and deinking sludge pigment and glass and photographic
sludge manufacturing emulsions.

Fig. 2—Plant availability of toxic trace elements.
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immobilisation of trace elements in the heavy metal ladenagnesium and “f” for ferrum, or iron). The weathering
substrates. processes in serpentine soils are highly dependent on
The restoration of a dense vegetation cover is the magriations in climatic regime, age, topography, chemical
useful and widespread method to physically stabilise the minemposition of the parent material and biological activity.
wastes and to reduce metal pollution effects (Bargagli, 1998)yperaccumulator plants are geographically distributed and
Different plant species that are well adapted to the locate found throughout the plant kihngdom (Brooks, 1998). For
conditions, capable of excluding and accumulating heavgtest information about such plants please refer to Deghers
metals without showing toxic symptoms are the ideal speciak, 2008; Dixonet al., 2008; Green & Renault, 2008;
that should be considered for early stages of revegetationLottermoseet al, 2008; Troist al, 2007; Prasad, 2004 a-c,
the ‘green corridor’ or establishment of ‘green belt’. Several @006 a-d, 2007; Prasad al, 2006 and others. Tree-grass-
the grasses, legumes and trees can be a suitable materiaefgume association was found to be the best combination for
this purpose (McLaughliet al, 2000; Prasad, 2006d). Smithrestoration of mica, copper, tungeston, marble, dolomite,
et al (1998) suggested the Bermuda gr&spdon dactylgn  limestone, and mine spoils of Rajasthan and elsewhere in India

for stabilising metalliferous soils. (Prasad, 2007).
METAL TOLERANT PLANTS FOR REHABILITATION PHYTOASSISTED RHIZOREMEDIATION BY
OF MINE SITES MICROBES

Serpentine soils (ultrabasic rocks) “hotspots” of A number of plants which can tolerate and accumulate
metallophyte endemics are the rich source of toxic trateégh concentration of metals were discovered and defined as
elements. Serpentinized rocks are distributed all over the woitiyperaccumulators. In general the ideal hyperaccumulators

Serpentine soils contain very high nickel (~10 mg peor phytoremediation require the characteristics of rapid growth
gram soil); cobalt and chromium, both of which are presentatd a high amount of biomass (eteal, 2002). But in fact, to
lower levels compared to nickel. These soils are also richdiate most of the identified metal hyperaccumulators are small
iron and magnesium mixed with silica and low nutrient leveland slow growing (Mulligaet al, 2001). Moreover, the metals
Soil scientists call this condition ultramafic (“ma” stands foat elevated levels are generally toxic to most plants impairing

Soil amendments with

Rhizosphere pH changes: chelators: EDTA. HEDTA Soil fertilization with
low pH |_ncreased the_ DTPA, EGTA, EDDHA, _ NPK enhgnced
concentration of_ metals in NTA citrate and bioproductivity/metal
soil solution hydroxylamine enhanced accumulation in shoot
metal mobility /
Manipulation of sorption Rhizosphere Phytosiderophore formation
sites, e.g. addition of mediated metal In Poaceae (mugenic and
phosphate to soil to tolerance and avenic acids) enhanced root

extract As, Cr and Se uptake of Fe

acquisition

Root exudates - e.g.

Rhizosphere pH changes: organic acids regulate the Physico-chemistry of
low pH increased the mobility of metal ions. different soils —
concentration of metals in Rhizobox experiments “Rhizodeposition”
soil solution using different plant
species

Fig. 3—Rhizosphere mediated metal tolerance and acquisition mechanisms.
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their metabolism and reducing plant growth. These propertiggerant rhizosphere bacteria have been isolated from metal
have an adverse impact on the potential for metgbntaminated soils, which can be useful for reclamation of

phytoextraction and restrict the employment of thisuch metal contaminated soils as they are found to be
technology. In this regard, studies on the interactions amoggsociated with a large number of plant species in metal rich
metals, rhizosphere microbes and plants have attractgsll. The bacterial flora associated with rhizosphere of various

attention because of the biotechnological potential ¢fyperaccumulators have been isolated and characterized from
microorganisms for plant growth promotion in metal rich soilghetal contaminated soils (Idrs al, 2004; Mengonet al,

and metal removal directly from soils or the possible transfefp1: Aboudraret al, 2007). Abou-Shanasbt al (2007)

of accumulated metals to higher plants (Za&tal, 2006; ¢qjlected forty-five bacterial strains from Oregon serpentine

Dell’Amico et al, 2008; Rajkumar & Freitas, 2008a). Furtherg ;| (¢hirty from the rhizosphere #lyssum muraland fifteen

rhizosphere microbes play significant roles in recycling of plagtym i rich soil) and tested for their ability to tolerate arsenate,

nutrients, maintenance of soil structure, detoxification Otfadmium chromium, zinc, mercury, lead, cobalt, copper, and
noxious chemicals, and control of plant pests (Elsgeeat nickel in their growth medium. The authors observed a large

2001; Filip, 2002). On the other hand, the plant root eXUdatﬁLSmeer of the strains were resistant to Ni (100%), Pb (100%),

prpvidbg r|1utritio|n to_ r_hizpsprr:ereh_microli)es, thlﬁ ihngreasi% (100%), Cu (98%), and Co (93%). Five of the strains (about
microbiological activity In the rhizosphere, which in turn11.2% of the total), specificallrthrobacter rhombi

stimulate plant growth and reduce the metal toxicity in plants; ", - . . .
lavibacter xyli Microbacterium arabinogalactanolyticum

Among the rhizosphere microorganisms involved in plant =" " .
é?mzoblum mongolensand Variovorax paradoxusvere

interactions with the soil milieu, the plant growth promotin ) ) o X
thizobacteria (PGPR) and arbuscular mycorrhizal fungi (AMRPI€rant to nine different metals. Similarly, Mengeral (2001)
deserve special attention. Characterized the heterotrophic nickel-resistant bacteria from
three different serpentine outcrops in central Italy populated
PLANT GROWTH PROMOTING RHIZOBACTERIA by the nickel-hyperaccumulating plaAtyssum bertolonii
(PGPR) These authors found that serpentine bacterial communities

tolerated spiking of metals, such as nickel, more than those

Rhizosphere microorganisms, which are closelgollected from unpolluted soils and that the presenck. of
associated with roots, have been termed plant growigrtolonii led to an increase in metal-resistant bacteria
promoting rhizobacteria (PGPR) (Glick, 1995). Several metgproportion in the soil samples collected near the plants.

Adaptive ecophysiology,
biochemical and
molecular basis

Environmental crops Biodiversity
(tree crops, industrial |«——| Biogeotechnological —| prospecting (including
crops, fibre crops, etc. interventions for genetic diversity)

remediation of

Soil amendments
through irrigation

Rhizosphere
biotechnology

abandoned mines

Bioavailability (risk based
remediation) and co-production of
phytoproducts

Fig. 4—Metal-ion bioavailability and interactions between phases is the key factor for remediation of abandoned mine spoils.
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The metal resistant PGPR include a diverse group of fregzowth in metal contaminated soil is often associated with
living soil bacteria that can improve host plant growth anidon deficiency and reduced uptake of some other essential
development in heavy metal contaminated soils by sevesément (Ma & Nomoto, 1993). However, microbial siderophore-
mechanisms. The best-known mechanism is the utilizationiobn complexes can be taken up by plants, and thereby serve
ACC by PGPR. A number of PGPR, which stimulate the growtis an iron source for plants (Buwital, 2000; Rajkumaet al,
of different plant species including mustard, castor pbeaR006). For instance, the siderophores produced by PGPR
canola (Maet al, in press; Rajkumar & Freitas, 2008b;improve Fe uptake by mustard and pumpkin (Sinha &
Dell’Amico et al, 2008), contain the enzyme ACC deaminas@/ukherjee, 2008) and maize (Sharma & Johri, 2003) with the
which hydrolyses ACC (the immediate precursor of the pladisappearance of the chlorosis phenomenon in mung bean
hormone ethylene. Some of the plant ACC is exuded from rodf&ipathi et al, 2005). This suggests that the inoculation of
or seeds and cleaved by ACC deaminase tq &lttl a- siderophore producing PGPR in the rhizosphere/seeds can
ketobutyrate (Penrose & Glick, 2001). The PGPR utilize thacrease the growth of plants in the presence of heavy metals
NH_evolved from ACC as a source of N and thereby decreaseluding nickel, lead and zinc (Ides al, 2004; Tripathet al,

ACC within the plant with the concomitant reduction of plan005).

ethylene (Grichko & Glick, 2001). Arecent study by Belimove  Besides, the PGPR promotes the plants growth by
et al (2005) found that there is a high correlation between tiselubilising insoluble phosphate and producing IAA. The

in vitro ACC deaminase activity of the bacteria and thelieavy metals at elevated levels in soil interfere with uptake of
stimulating effect on root elongation suggested that utilizatidh and other nutrients and lead to plant growth retardation
of ACC is an important bacterial trait determining root growtkHalsteacdet al, 1969). Under such conditions, metal resistant

promotion in metal contaminated soils. PGPR offer a biological rescue system capable of solubilizing

It should be mentioned that siderophore production ke insoluble P and make it available to the plants (2aali,
PGPR is also believed to play an important role in plant grow#906; Rajkumar & Freitas, 2008b). For instad@romobacter
in metal contaminated soils. In general, the reduction of plaxlosoxidanssolated from Cu rich mine soil exhibits a potential

Environmental and other factors

Remediation
of abandoned
mine sites

Plant assemblage Soil biogeochemistry

Phytovolatilization

Atmosphere —> —>
Heavy metal
—> | Phytoaccumulation
Hyperaccumulator
Accumulator Plant . .
_ — | Rhizofilteration
Indicator
Excluder ) o
Soill 5 | Phytostabilization

(Rhizosphere) ——>

Fig. 5—Biogeotechnological interventions and biodiversity and genetic diversity prospecting for remediation of abandoned mines.
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for phosphate solubilization observed in higher shoot ar@ncentrations of IAA are different from one microorganism
root length and biomass with inoculated plants @¥lal, in  to another: 39 ng/ml witRseudomonas asple#iC (Reeckt
press). Another phosphate solubilising PGPfeudomonas al., 2005) and 55 mg/ml witBacillus subtilisSJ-101 (Zaidet

sp. NBRI 4014 was shown to stimulate the growth of soybeaals, 2006). According to the IAA level, root elongation changes
in a soil contaminated with Ni, Cd and Cr (Guetal, 2002) qualitatively. A low level of IAA produced by rhizosphere
and the mixed inoculam of N-fixing bacteriazptobacter bacteria promotes primary root elongation whereas a high level
chroococcunHKN-5), P solubilizersBacillus megaterium of IAA stimulates lateral and adventitious root formation but
HKP-1), and K solubilizerdRacillus mucilaginosuklKK-1) inhibit primary root growth (Xiet al, 1996). Thus PGPR can
increased the growth of mustard in metal contaminated soil facilitate plant growth by altering the plant hormonal balance.
increasing the content of N and S in mustard éf\al, 2006). The metal resistant PGPR belonging to different genera such
These authors established that nutrients play an import@stPseudomonas, Mycobacterium, Bacillus, Agrobacterium
role in the detoxification of heavy metals while heavy metalsnd Achromobactemwere found to have plant growth-
inhibit the assimilation of these elements by plants. Furthgmomoting features that can potentially promote plants growth
the production of IAA by PGPR is believed to play an importargnd reduce heavy metals stress symptoms in plants
role in plant-bacterial interactions and plant growth in metéDell’Amico et al.,2008; Zaidiet al, 2006; Rajkumaet al.,
contaminated soils (Vivast al, 2003; Sheng & Xia, 2006; 2005; Maet al, in press).

Dell’Amico et al, 2008). Root elongation of mung bean has  The process of metal uptake and accumulation by
been shown to be stimulated by IAA synthesized bgifferent plants depends on the concentration of available
Pseudomonastrain GRP3 (Sharnmet al, 2003) as well aB.  metals in soils, solubility sequences and the plant species
auriginosaMHRh3 on the black gram roots (Ganesan, 2008jGupta & Sinha, 2006). In addition to plant growth promoting

Landfill Extraction

Incineration

Recovery of useful products and disposal

I - Phytoproducts, biodiesel,

: : _ fibres and industrial
High biomass and high

products

bioaccumulation coefficient crops

e.g. Environmental crops <

Tree crops; Ornamentals Application of appropriate

\ biogeotechnology for

optimization of results

Fig. 6—Recovery of useful phytoproducts and disposal from plants growing on metalliferous substrates.
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potential, the metal resistant PGPR have been shown to possessARBUSCULAR MYCORRHIZAL FUNGI (AMF)

several traits that can alter heavy metal mobility and availability

to the plant (Rajkumaat al, 2005; Cheset al, 2005; Wiet al, Arbuscular mycorrhizal fungi (AMF) are soil
2006), through acidification, or by producing iron chelatorghicroorganisms that establish mutual symbioses with the
siderophores, organic acids and/or mobilizing the metg1ajority of the roots of higher plants, providing a direct
phosphates (Zaidét al, 2006; Abou-Shanabt al, 2003; physical link between soil and plant roots (Smith & Read,

Tripathiet al, 2005). Abou-Shanai al (2006) observed that 1997). They occur in almost all habitats and climates including
the inoculation ofMicrobacterium oxydans Rhizobiumdisturbed soils such as those derived from mine activities, but

galegae, Clavibacter xyli, Acidovorax avenae v Soil disestablished usually produce changes in the diversity

arabinogalactanolyticunandM. oxydando serpentine soils and abundance of AMF population (Jefiries & Barea, 2001).

significantly increased the bioavailable Niconcentrationthu%n the other hand, the occurrence of AMF in metal

. - . contaminated soils has been reported for several plant species,
enhancing the availability of Ni talyssum muraleThey suggesting that AMF colonisation could be a critical strate
indicated that rhizobacteria facilitated the release of Ni frogy 22 9 9y

th luble oh inth i It of . 'or plant survival in these areas (Mikes$ al., 2005;
€ non-soluble phases In the soil as a result ot organic a ngaswamst al, 2005; Toniret al, 2001). Leunget al,

or s_iderophore production and phosphate sol_ubilisatiopzom) conducted a survey for AMF components in five mining
Similar observations have also reported by Rajkumar aQfies with higher concentrations of heavy metals such as Pb,
Freitas (2008b) who found that the inoculatioReéudomonas Zn, Cu, Cd at Chenzhou City, Hunan Province, southern China.
sp. PsM6 olP. jesseniiPjM15 to surface sterilized roots OfThey found three components of mycorrhizal colonization
Ricinus communigcreased the Zn concentration in Sh00t§arbuscules, vesicles and coiled hyphae) in the roots of
compared with non-inoculated controls. The increasedynodon dactylomndPteris vittatagrowing in mining site.
accumulation of metals in presence of PGBt be due to |t was apparent that AM fungi were associated with a majority
more metal uptake under acidic soil conditions, which developgthe plants in the mining sites and supported plant survival
as aresult of P solubilisation and/or excretion of organic acigtsmetal affected soils.

in soil (Cheret al., 2005). Effects of pH on the solubility and It is well known that arbuscular mycorrhizal (AM)
speciation of metals are well documented (Gadd, 2001; Gadalonisation can improve plant nutrition as well as protect
& Sayer, 2000). Sheng and Xia (2006) reported that the additiplants under heavy metal stress. In Portuguese ultramafic soils
of Cd-resistant bacterial straitsBrassica napugrown in the occurrence of AM has been reported for several herbaceous
metal contaminated soil significantly increased the plant uptaBecies, suggesting that AM colonisation could be a critical
of Cd when compared with the non-inoculated controls asS§ategy for plant survival in these areas (Gongaktes,

result of pH reduction. From these studies, it can be concludk?5)- Goncalvest al.(2001) investigated the seasonal trends
that by inoculating the seeds/rhizosphere with selected PGPRNe AM colonization ofestuca brigantinaan endemic

with beneficial features (plant growth promoting and met&rass and typical serpentinophyte, and suggested that AM
mobilizing potential), it should be possible to improve thgolomsauon confers enhanced phosphorus nutritional status,

hytoextraction efficiency of hyperaccumulator plants in met priching its pool for reproductive period during which the
Ecztmine soils y orhyp P emand will be quite high (Fig. 3). The biotechnological

In contrast, Madhaiyaet al (2007) reported that the interventions for remediation of abandoned mines and criteria

inoculationBradyrhizobiumsp. CBMB20 and CBMB40 to of applicability and monitoring are depicted in Fig. 3,

. . . o The effects of AMF on the plant growth and the uptake
metal contaminated soils reduced Ni/Cd availability in soil an(gjf metals by plants have been studied extensively in recent

al_so_ reduced the metal uptake in roots _and shqots qf tomeggars (Trottat al, 2006: Mikuset al, 2005), and itis generally
Similarly, Ganesan (2008) reported the inoculation with plaiifcented that under high metal concentrations in the soil, AMF
growth promoting bacteriurfP'seudomonas aeruginosamay protect the host plants by both improved P nutrition and
MKRh3 increased the plant growth and reduced the Cd uptafgcreased metal uptake and/or translocation (Gteat,

in black gram and it was probably due to bacterial immobilizatiogom)_ Most of the reports note a positive effect of AM
of Cd in rhizospherevlesorhizobium huakuflkeet al, 2007)  jnoculation on the growth of plants in metal-contaminated
and the bacterial strains isolated from water hyacintte{Sosoils. This protective benefit may be related to the adsorptive
al., 2003) protect the plants through heavy metair binding capability for metals of the relatively large fungal
immobilization. Furthermore, inoculation of plants with PGPRiomass associated with the host plant roots, which may
strains may also contribute in reducing the phytotoxic effegtdysically minimize or exclude the entry of metals into host
of the metals by sharing the metal load due to their ability pfant (Cairney & Meharg, 2000). Uptake of metals may be
biosorption and bioaccumulation (Vivasal, 2003; Zaidet influenced by absorption on hyphal walls as chitin has an
al., 2006; Rajkumar & Freitas, 2008b). important metal-binding capacity. In experiment Wwiucaena
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leucocephalal.inset al (2006) reported that a large proportiorincreased uptake and subsequent accumulation of metals in
of increased Cu content of mycorrhizal plants was sequestesdzbve-ground tissues of plants.

in the roots. Further, in the shoots, Cu concentrations were The beneficial effects of AMF in combination with
much lower than in the roots and lower in inoculated than bacteria have been reported by a number of workers (¥ivas
non-inoculated plants. This seems to indicate thai., 2003, 2005; Rabie & Almadini, 2005). The ability of soil
mycorrhization benefits plants under conditions of excess BGPR to stimulate the growth and the activity of AMF has
heavy metals, by retention of heavy metals in the roots been well documented and most probably involves the
even in the mycelium (Huarg al, 2005). Trottaet al (2006) production of bioactive stimulatory compounds such as
reported that the inoculation @lomus mossed®EG 12 and hormones, vitamins, amino acids, organic acids and enzymes
G. margaritaBEG34improved dry weight and leaf areaRtéris ~ (Bareeet al, 2002; Vivagt al, 2006; Kozdrogt al, 2007). The
vittatagrown in As contaminated soil and reduced root metaioculation oBrevibacillussp.with a mixer of AMF showed
concentration in comparison to non-inoculated controa noticeable increase in plant growth, nitrogen and phosphorus
Similarly, Mikuset al. (2006) reported that zinc and cadmiumaccumulations, and mycorrhizal infection in Pb contaminated
concentrations were lower in the biomass of mycorrhizabils (Vivaset al, 2003). Similarly, Duponnoist al (2006)
Thlaspi praecoxplant than that of nonmycorrhizal onesreported the inoculation of fluorescent pseudomonads
suggesting thaGlomus fasciculatundecreased zinc and increased AMF colonization in the contaminated soil. Several
cadmium uptake or its translocation to the shoots. The lowspecies of bacteria have been identified as mycorrhiza helper
metal concentration in mycorrhizal plants has also bedracteria mainly represented by a number of fluorescent
attributed to larger plant biomass resulting in a “growtlpseudomonads (Krupa & Kozdroj, 2007). On the other hands,
dilution” effect (Sheret al, 2006; Linet al, 2007). AMF reduce some reports stated that the presence of AM fungi is known
metal accumulation in leaves of non-hyperaccumulators (Jorterenhance nodulation and N fixation by legumes étial.,

& Leyval, 2001) and it has also been shown that AMF prote2007). Moreover, AM fungi and N-fixing bacteria often act
the plants against metal toxicity by increasing theynergistically on infection rate, mineral nutrition and plant
concentrations of metal chelating compounds, i.e. cysteigeowth.

and glutathione (GSH) (Gaét al, 1995). Besides, the binding In conclusion, these examples illustrate that inoculation
of metals in mycorrhizal structures (vacuoles) andf metal resistant microbes (PGPR and/or AMF) not only
immobilization of metals in the mycorrhizosphere may alsprotects plant from metal toxicity but also (mostly the PGPR
contribute to alleviate metal phytotoxicity by lowering theiinoculation) enhances the metal accumulation in plant tissue
accumulation in plant. AMF can modify Zn/Cd mobility bywith concurrent stimulation of plant growth. These beneficial
increasing the pH (less available Zn/Cd in the soil solutiosffects caused by inoculation with metal resistant microbes,
and therefore less Zn/Cd in root and shoot) (&heb, 2006). together with the suggested interrelationship between
These examples illustrate AMF could protect the plants fromicrobial heavy metal resistance and plant growth promoting
the toxicity of excessive heavy metals by changing thefficiency, indicate that inoculation with microbes might have
speciation from bioavailable to the non-bioavailable form ansbme potential to improve phytoextraction efficiency in metal
reflect that AMF are most suitable for phytostabilizationcontaminated soils. However, almost all the previous works
However, different ecotypes differ in their capacity to proteacn phytoextraction with PGPR and/or AMF were carried out in
the plant from metal toxicity by exhibiting differential metallab or greenhouse. Hence, extensive research including the
uptake levels into hyphae and plant (Taeal, 2005). Each interactions among plants, heavy metals and microbes in metal
contaminated site has a specific profile of pollutants for whiatontaminated natural soils are required to implement these
an appropriate combination of fungal and plant genotypesicrobial-assisted phytoremediation in field level.

must be established. Further, other interactions take place in

the soil that could positively or negatively affect the expected ACID MINE DRAINAGE (AMD)

efficiency of heavy metal stabilization.

AMF can also enhance metal uptake by plants, e.g. Leung The exposure and oxidation of iron sulphide from coal
et al (2006) reported that the addition of rhizofungi enhancemining results in acid mine drainage (AMD). AMD significantly
the uptake and accumulation of AdHteris vittataunder the impairs the quality of aquatic ecosytems. AMD is a serious
condition of 100 mg As per kg soil, noncolonized plantproblem in the Appalachian region of the United States of
accumulated 60.4 mg As kgvhile plants colonized by AMF America. The US bureau of mines estimated that about 20,000
isolated from an As mine accumulated 88.1 g As&wd also  km of streams or rivers are impaired by the AMD. Therefore, in
enhanced plant growth. Similarly, the enhanced accumulatioecent years several low cost preventive and passive
of Zn in shoot by AMF inoculation has been reported fatechnologies are being developed. The technologies rely upon
Solanumigrum(Marqueset al, 2008a, b) and sorghum (Tolerthe biological diversity and natural principles of
et al, 2005). These examples illustrate that AMF can lead bbogeochemical cycling to remediate the contaminated mine
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waters. For e.gGlyceria fluitans(floating sweetgrass) is an Abou-Shanab RAI, van Berkum P & Angle JS 2007. Heavy metal

amphibious plant and was found growing in the tailings pond resistance and genotypic analysis of metal resistance genes in gram-
positive and gram-negative bacteria present in Ni-rich serpentine

of an abandoned |e_ad'ZinC mine. Greenhouse experimentsoi and in the rhizosphere @flyssum muraleChemosphere 68:
demostrated th&. fluitanscould grow in sand culture treated 360-367.
with high zinc sulphate solutioihragmites australignd Abou-Shanab RAI, Angle JS, Delorme TA, Chaney RL, van Berkum P,

Tvoha latifoliahave since been arown on both alkaline and Moawad H, Ghanem K & Ghozlan HA 2003. Rhizobacterial effects
yp g on nickel extraction from soil and uptake Byyssum muraleNew

acidic zinc mine tailings in field conditions. In this regards Phytology 158: 219-224.
metal tolerant flora in constructed wetlands, anoxic lime stoé€ou-Shanab RAI, Angle JS & Chaney RL 2006. Bacterial inoculants

: : . : affecting nickel uptake bylyssum muraldrom low, moderate and
drains (ALD) and successive alkalinity producing systems high Ni soils. Soil Biology and Biochemistry 38: 2882-2889.

(SAPS) have remedial potential and promising results hax@riano DC 2001. Trace elements in terrestrial environments:
been obtained in several instances (Prasad, 2001). The vitaBiogeochemistry, bioavailability and risks of metals. 2nd ed. Springer-

processes inolved in remediation of mine tailings using by Verlag New York Inc., p. 866. o
t and submerged plants are (a) preventin fc)rmamoaker AJ 1981. Accumulators and excluders — strategies in the response
emergent ana submergea p p 9 "t plants to heavy metals. Journal of Plant Nutrition 3: 643-654.

of AMD, (b) removal of metals from AMD, (c) increasing theBaker AJM, McGrath SP, Sidoli CMD & Reeves RD 1994a. The

pH by CQ uptake and (d) accelerate sedimentation. possibility of in situ heavy metal decontamination of polluted soils
using crops of metal-accumulating crops. Resources, Conservation

and Recycling 11: 41-49.
CONCLUSIONS Baker AJM, Reeves RD & Hajar ASM 1994b. Heavy metal accumulation
and tolerance in British populations of the metallophytgaspi
Revegetation of mine tailings is a challenging task in caeer;ulescens]. & C. Presl (Brassicaceae). New Phytology 127:
view (_)f the f_act tha_t the_ meta_ll mine tailings are usually Vel argagli R, Monaci F & Agrorelli C 2003. Oak leaves as accumulators
poor in nutrients, rich in toxic metal content and have [ow of airborne elements in an area with geochemical and geothermal
capacity to retain water. Further, wind erosion of mine tailinggs anomalies. Environmental Pollution 124: 321-329.

poses another serious environmental problem. All the§&'¢2 JM, Azcon R & Azcon-Aguilar C 2002. Mycorrhizosphere
interactions to improve plant fitness and soil quality. Antonie van

problems could be averted if tailings could be revegetated| ceuwenhoek 81: 343-351.
using metal tolerant plants following the strategies dfashmakov DI, Lukatkin AS & PrasadNV 2006. Temperate weeds in
phytoassisted rhizoremediation. Scope and limitations of Russia serve as sentinels for monitoring trace element pollution.

hvt diati f aband d mi it “Metall ., Prasad MNV, Sajwan KS & Ravi Naidu (Editors)—Trace elements in
phytoremediation or abandoned mine sites. etallomiCs” e environment: Biogeochemistry, Biotechnology and

approach pooling disciplines of “-omics” is progressing Bioremediation. CRC Press, Florida, USA (Taylor and Francis) Chap
rapidly and results achieved so far are very promising and?23: 439-450.

opening several opportunities for entrepreneur&ashmakov DI, Lukatin AS & Prasad MNV_2002. Zinc
hyperaccumulating weeds from temperate Russia. Zeszyty Naukowe

Phytoproducts, e.g. biofuels, from plant assemblages involvedpan 33, com In. Editors: Kabata-Pendias A. & SztekeMafi and
in phytoremediation and risk based remediation is a practically Biospheré.. Warsaw, p. 309-313.

feasile solution for protecting mine environment (Fig. 6).  Belimov AA, Hontzeas N, Safronova VI, Demchinskaya SV, Piluzza G,
Bullitta S & Glicek BR 2005. Cadmium-tolerant plant growth-

) . promoting bacteria associated with the roots of Indian mustard
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