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ABSTRACT

Pandita SK, Siddaiah NS, Tewari R, Chatterjee S & Agnihotri D 2018. Geochemistry of coal–bearing Permo–Triassic strata 
in Allan Hills, South Victoria Land, Antarctica: Implications for palaeoclimate. The Palaeobotanist 67(1): 89–97.

Major, trace and rare earth element (REE) geochemistry has been carried out in this paper to characterize source–rock 
weathering and climatic variability of the late Permian Weller Formation and the late Triassic Lashly Formation of Gondwana 
sequences which have yielded rich record of plant mega–and micro fossils associated with coal beds in post–glacial conditions in 
Allan Hills of South Victoria Land, Antarctica. The geochemistry suggests dominantly a felsic provenance with a volcanogenic 
input and role of weathering and hydrothermal alteration. The palaeoclimatic interpretation derived from geochemical analysis 
indicates warm, temperate and humid conditions during the late Permian, and warm and humid conditions during the late Triassic.

Key–words—Geochemistry, Permian, Triassic, Allan Hills, Antarctica.
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© Birbal Sahni Institute of Palaeosciences, India

The Palaeobotanist 67(2018): 89–97
0031–0174/2018



90 THE PALAEOBOTANIST

INTRODUCTION

ANTARCTICA, presently one of the world’s driest deserts 
and totally inhospitable to plant life, was a part of the 

Gondwana Supercontinent during Permian and Triassic along 
with other continents such as India, Australia, South America 
and South Africa. The melting of the late Carboniferous–Early 
Permian ice sheet led to amelioration of climate subsequently 
followed by a rapid evolution of the Glossopteris flora in the 
Gondwana continents. Extensive cold–temperate swamps 
with thriving plant communities of Glossopteris and other 
allied plants formed thick coal seams in different Gondwana 
basins. The trunks of the trees that bore Glossopteris leaves 
are marked by growth rings, reflecting the effects of strong 
seasonality. At the end of the Permian, when the climate 
became increasingly hot and dry with marked seasonality 
of rainfall, a new flora–the Dicroidium flora appeared in 
the Gondwana continents. The Permo–Triassic transition 
is an important time in the evolution of several groups of 
Gondwana plants, when Dicroidium flora gradually replaced 
the Glossopteris flora. Antarctica, too, fostered dense forests 
of Glossopteris and Dicroidium floras during Permian and 
Triassic, respectively.

The vegetation of Antarctica is of evolutionary 
significance since it encompasses not only early vascular 
land plants like bryophytes but also a number of higher plant 
orders such as Sphenophyllales, Filicales, Pteridospermales, 
Glossopteridales, Cordaitales Corystospermales, Cycadales 
and Pinales. A plethora of information is available on the 
Permian (Plumstead, 1975; Rigby, 1969; Rigby & Schopf, 
1969; Schopf, 1968, 1976; Kräusel, 1962; Maheshwari, 
1972; Chatterjee et al., 1983; Gee, 1989; Pigg & Taylor, 
1990, 1993; Smoot & Taylor, 1986; Taylor & Taylor, 1987; 
Taylor et al., 1992; Retallack & Krull, 1999; Retallack et al., 
2005) and Triassic (Osborne & Taylor, 1989; Osborne et al., 
2000; Bose et al., 1990 and references cited therein, Perovich 
& Taylor, 1989; Delevoryas et al., 1992; Webb & Fielding, 
1993; Taylor, 1996; Taylor et al., 1994; Cantrill et al., 1995; 
McLoughlin et al., 1997; Yao et al., 1995,1997; Phipps et al., 
1998; Axsmith et al., 2000; Rothwell et al., 2002; McManus 
et al., 2002; Klavins et al., 2002, 2003, 2004; Hermans et al., 
2007; Bomfleur & Kerp, 2010; Bomfleur et al., 2007, 2011; 
Escapa et al., 2011) megafloras of east and west, and central 
Transantarctic Mountains, Antarctica. Besides, several studies 
have been carried out on palynological (Balme & Playford, 
1967; Kyle, 1977; Kyle & Schopf, 1982; Larson et al., 1990; 
Farabee et al., 1990; Lindstörm, 1996, 2005; Masood et al., 
1994; Askin, 1995; McLoughlin et al., 1997; Ram–Awatar 
et al., 2014), faunal (Hammer et al., 2004; Retallack et al., 
2005 and references cited therein), palaeofire (Kumar et al., 
2011) geochemical and geophysical (Angino & Armitage, 
1963; Weiss et al., 1979; Saunders et al., 1980; Kurat et al. 

1994; Roex et al., 1985; Zhao et al., 1997; Khare et al., 2009; 
Srivastava et al., 2013), and petrological (Roex et al., 1985; 
Kumar et al., 2013) aspects.

The late Permian Weller Formation and the late Triassic 
Lashly Formation of Gondwana sequences in Allan Hills 
(latitude 76.72ºS, longitude 159.67ºE) of South Victoria Land, 
Antarctica have yielded rich record of plant mega–and micro 
fossils associated with coal beds in post–glacial conditions 
(Chatterjee et al., 2013; Ram–Awatar et al., 2014: Tewari 
et al., 2015). The Weller Formation, which lies directly 
over the early Permian glacial strata, records a change from 
glacial to postglacial condition with the establishment of 
polar forest (Tewari et al., 2015). Upward in the Gondwana 
sequence, thick coal beds occur in swamp and meandering 
stream facies of Weller and Lashly formations, while they are 
conspicuously absent in the intervening Feather Formation 
of channel deposits. Sedimentological (Retallack et al., 
2005) and petrographic (Kumar et al., 2011) studies of these 
fossiliferous horizons exhibit microscopic charcoal remains, 
which suggest ancient forest fire events, possibly caused by 
continental volcanism (Kumar et al., 2013). The preservation 
of carbonaceous material and the deposition of coal during 
Permian and Triassic were probably related to climatic 
changes, including increase in temperature and humidity.

Major, trace and rare earth element (REE) geochemistry 
has been found to be useful to characterize source–rock 
weathering and climatic variability from the terrestrial detritus 
of a basin (Nesbitt & Young, 1982; Cox et al., 1995; Basu, 
1976; Quasim et al., 2017). Their records are influenced 
by source rock lithologies, chemical weathering, sorting, 
sedimentation and post depositional diagenetic reactions 
(McLennan et al., 1993). The distribution of these elements 
provides clues of the geological processes, provenance and 
tectonic setting (McLennan et al., 1993; Cullers et al., 1988; 
McLennan, 1989). The REE geochemistry has an added 
advantage over major and trace elements to decipher the 
provenance, since the concentration of these elements is not 
affected during erosion, sedimentation and diagenesis and 
thus represents a homogenized average source composition 
(McLennan, 1989; Bhatia, 1985; Nance & Taylor, 1976).

This paper attempts to investigate the geochemistry 
of two rock samples collected from the Permian Weller 
and Triassic Lashly formations to understand the source 
and composition of these rocks and their implication on 
palaeoclimate of the area.

GEOLOGICAL SETTING

The Beacon Supergroup crops out along the length of 
the Transantarctic Mountains and was deposited in a retroarc 
foreland basin (Collinson et al., 2006). The exposures of this 
supergroup in the Allan Hills occur in the shape of a Y (Fig. 
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Fig. 1—Geological map of Allan Hills (marked by an arrow), South Victoria Land, central Transantarctic Mountains, Antarctica (modified after Kyle, 1977) 
showing the sample locations.
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1) and are divided into two units: the lower Victoria Group 
of mainly fluvial siliciclastics, and the upper Ferrar Group 
of volcanic origin (Ballance, 1977; Chatterjee et al., 1983).

The stratigraphy of Allan Hills has been discussed by 
Gunn and Warren (1962), Borns and Hall (1969), Barrett et 
al. (1971), Barrett and Kohn (1975), Ballance (1977), Kyle 
(1977) and Collinson et al. (1987). The Permian–Triassic 
boundary is difficult to recognize in the non marine Gondwana 
sections of Antarctica. The Glossopteris flora in the Allan 
Hills is mainly restricted to Permian. Hence, most likely, 
the Permo−Triassic boundary in this region, if complete, 
would occur somewhere between the Weller Formation and 
the Feather Conglomerate. However, demarcation of the 
exact Permo−Triassic boundary in the Antarctic Gondwana 
sequences is highly controversial.

The Permo−Triassic Victoria Group consists of flat–lying 
continental sediments and ranges in age from Permian to 
Jurassic, and is exposed throughout much of the Transantartic 
Mountains. It consists of Permian glacial beds (the Metschel 
Tillite) at the base, which are overlain successively by the late 
Permian Weller Formation and the Triassic Feather and Lashly 
formations (Collinson et al., 2006). The Triassic strata are 
overlain disconformably by the Ferrar Group which comprises 
the lower Mawson Formation consisting mainly of diamictite 
and the upper Ferrar Formation which shows intrusions of 
sills and dykes of the Ferrar dolerite. The Mawson and Ferrar 
formations are of early and late Jurassic ages, respectively.

Chatterjee et al. (2013) have described the stratigraphic 
setup of the Weller and Lashley formations. The Glossopteris–
bearing Weller Formation consists of conglomerate, arkosic 
sandstone, shale, and coal in fining–upwards cycle. The 
Formation is about 250 meters thick and is easily recognizable 
from its coal–bearing horizons. It consists of three members: 
A, B, and C.

The Triassic Lashly Formation, which is more than 500 
m thick, is a succession of cyclic medium–to fine grained 
sandstone and carbonaceous plant–bearing mudstone 
and siltstone beds. It gradationally overlies the Feather 
Conglomerate. Barrett and Kohn (1975) subdivided the Lashly 
Formation into four informal members (A through D), where 
the lower part (members A and B) is more volcaniclastic than 
the quartzose upper part of the formation (members C and D; 
Collinson et al., 1987; Fig. 2).

METHODOLOGY

For geochemical analysis, representative samples from 
coal bearing strata of carbonaceous shale (from Member C of 
the Permian Weller Formation) and green shale (from Member 
C of the Triassic Lashly Formation) were selected and ground 
to 80 mesh standard sieve size. One portion of the screened 
samples was ground to about 200 mesh using agate mortar and 
pestle. Pressed powder pellets were prepared by mixing with 

4–5 drops of polyvinyl alcohol as binding agent (Stork et al., 
1987; Saini et al., 2002). The pellets were analyzed for the 
major and trace elemental abundance by standard Wavelength 
Dispersive X–ray Flourescence Spectrometer (Siemens SRS–
3000) at Wadia Institute of Himalayan Geology, Dehradun 
(WIHG). REEs (rare earth elements) were determined using 
ICP–MS (PerkinElmer, Elan–DRCe) at WIHG, Dehradun 
using the methodology as reported by Khanna et al. (2009). 
The analytical results were consistent with the International 
Geostandard Reference values with mean percent deviation 
2−5% for major oxides, 12% for trace elements and 1−15% for 
REE and are displayed as Table 1. The chondrite–normalized 
REE plot is shown in Fig. 3.

RESULTS AND DISCUSSION

The major and trace element contents particularly high 
zirconium concentration (100 to 165 ppm), high La/YbN = 
4.07 to 9.73 ratios, negative Eu anomalies along with the 
tetrad effect in both the shale samples suggest dominantly 
of a felsic provenance/source and with a volcanogenic input 
during their deposition. The high loss on ignition (7.4–12.6 
wt %) indicate that the samples have undergone high degree 
of weathering/alteration to become soils/palaeosols.

Concentration of SREE in the two samples ranges 
from 107.56 to 193.8 ppm. The chondrite–normalized REE 
composition of the samples in general exhibit similar patterns 
with overlapping abundances of heavy REE. The patterns 
are characterized by LREE (Light Rare Earth elements) 
enrichment (LaN/SmN = 2.41–3.8), relatively flat HREE 
(Heavy Rare Earth elements) (GdN/ YbN = 1.25–1.69) but 
with a prominent tetrad effect and negative Eu anomalies 
(Eu/Eu* = 0.54–0.88). High abundances of light REE in the 
carbonaceous shale relative to green shale is due to its higher 
contents of Fe2O3 (20.4 wt %) and MnO (2.63 wt %) with 
which they could have co–precipitated during weathering, 
and redistribution during hydrothermal alteration.

Interestingly, both the samples exhibit clearly the third 
tetrad (T3: Gd–Tb–Dy–Ho, i.e. M−type) and fourth tetrad (T4: 
Er–Tm–Yb–Lu, i.e. W−type) effect (Fig. 3). The coexistence 
of composite M− and W−type of REE tetrad effect in the same 
samples indicates the involvement of aqueous fluids during 
weathering and hydrothermal processes. It has been found 
experimentally that aqueous fluids contribute to the formation 
of M− and W−type of REE tetrad effect. Similar kind of tetrad 
effect were also reported in H2O/aqueous bearing phases such 
as soils, pegmatites, tuffaceous rock with clastic minerals and 
lignite (Feng, 2010). This is because the different electronic 
configuration of REE affects their complexing behaviour in 
weathering system. Therefore, the variable stability of REE 
complexes, in general and heavy REE in particular in aqueous 
solution causes the REE fractionation and tetrad effect 
occurrence during their mobilization and redistribution in the 
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Fig. 2—Litholog of the Victoria Group in South Victoria Land (after Kyle, 1977) showing sample locations.
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weathered profile/palaeosoils (Masuda et al., 1987; Siddaiah 
et al., 1994; Feng, 2010). Although, the tetrad effect was 
studied in igneous/magmatic systems and marine sediments, 
but very little is known about its development during REE 
mobilization, transfer, precipitation, and redistribution under 
weathering conditions (Feng, 2010).

The deviation from the normal linear trend of chondrite–
normalized REE patterns, the striking and characteristic REE 
tetrad effect observed in the carbonaceous shale and green 
shale must be an indication of peculiar geochemical processes 
involved. The prominent M–and W–type tetrad effect and 
high Y/Ho ratio (26 to 27) in the samples studied indicates 
that remarkable fractionation between Y and Ho occurred 
during weathering process. All the geochemical characters 
of both the sediment samples indicate the role of weathering 
and hydrothermal alteration in their genesis/formation, and 
belong to incipient to moderately developed palaeosols. The 
carbonaceous shale (sample ATP020) from Permian Weller 
Formation has undergone intense weathering and extensive 
ferruginization than the Triassic green shale (sample ATP238) 
indicating a warmer and wetter climate.

The proliferation of Glossopteris flora during the late 
Permian also suggests warm, temperate and humid climatic 
conditions, which were suitable for the formation of coal. 
However, during the early Triassic, the climate became 
increasingly hot and dry with marked seasonality of rainfall. 
As a consequence, coal is absent and development of red–beds 
is manifested in almost all the Gondwana basins (Rettalack, 
et al., 1996; McLoughlin et al. 1997; McLoughlin, 2001). 
The advent of Triassic is marked by the evolution of a new 
flora–the Dicroidium flora (Lele, 1976). By the late Triassic, 
when the climatic conditions became warm and humid, several 
gymnospermous plant orders comprising Bennettitales, 
Pentoxylales, Peltaspermales, Cycadales, Pinales, Ginkgoales 

Fig. 3—Chondrite–normalized REE patterns for Carbonaceous shale (ATP 
020) and Green shale (ATP238 ) showing composite T3 & T4 tetrad 
effect.

REE
La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu

ATP020 19 39 4.5 20.8 4.78 1.22 4.78 0.84 4.76 0.99 2.86 0.46 3.07 0.5
ATP238 43.7 66.2 8.9 45.9 6.99 1.32 6.26 1.02 5.5 1.09 3.07 0.47 2.96 0.43

ITEM Sample Na2O MgO Al2O3 SiO2 P2O5 K2O CaO TiO2 MnO Fe2O3 SUM LOI 

Major 
Oxides

ATP020 0.92 0.89 15.64 69.64 0.01 3.4 0.18 0.62 0.02 2.63 93.95 7.41
ATP238 1.19 1.34 10.08 51.64 0.21 0.78 2.05 0.45 0.53 20.4 88.67 12.66

all values in %

Trace 
Elements

Ba Cr V Sc Co Ni Cu Zn Ga Pb Th Rb U Sr Y Zr Nb
ATP020 901 64 83 12 51 20 31 63 22 16 26 182 2.6 96 27 165 15
ATP238 116 32 92 9 30 42 30 65 20 24 5 40 2.98 180 28 100 5

all values in PPM

Table 1—Major, Trace and REE analysis of Permian carbonaceous shale (ATP 020) and Triassic green shale (ATP 238).

and Gnetales flourished in many Gondwanan countries 
(Townrow, 1966; Archangelsky, 1968; Holmes & Ash, 1979; 
Pal, 1984; Anderson & Anderson, 1983, 1985, 1989; Bose et 
al., 1990; Pattemore & Rigby, 2001; Bomfleur & Kerp, 2010; 
Moison et al., 2010).

The palaeoclimatic interpretation derived from 
geochemical analysis of the Antarctic samples, in general, 
corroborates with the earlier interpretations of the climate 
based on plant fossils and formation of coal which indicate 
warm, temperate and humid conditions during the late 
Permian, and warm and humid conditions reflected by 
presence of dicynodont vertebrates and thick Dicroidium 
forests during the late Triassic. However, warmer climate of 
Weller Formation as compared to that of the Lashly Formation 
of Allan hills may be a local variation.
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