SACCATE POLLEN GRAINS FROM THE LOWER TRIASSIC OF HALLSTATT, AUSTRIA

H. P. SINGH

Birbal Sahni Institute of Palaeobotany, Lucknow

ABSTRACT

A dispersed miospore assemblage consisting of 8 miospore genera and 19 species is described from a shale of Werfen, Hallstatt, Austria. 6 species are new. Saccate pollen grains, the only constituents of this mioflora are abundantly represented. The predominant occurrence of Lueckisporites (Pot. & Kl.) Potonie and Gigantaerosporites Klaus appears to be very characteristic for this assemblage. A brief comparison of the present mioflora with comparable ones has been given.

INTRODUCTION

THE present paper describes and illustrates the saccate pollen grains dispersed in the rocks of Lowermost Triassic of Austria. The miospore assemblage is characteristically represented by saccate pollen grains only, the frequency of bisaccate types being enormous. The preservation of the organic matter is not satisfactory as many of the pollen grains appear to be dark brown and are almost opaque. Despite this, I have been fortunate in getting some better preserved specimens which, in fact, have laid the basis for the taxonomic work of the present mioflora. Klaus (1953a) has recognized 5 miospore genera in the Werfener Sichichten of Hallstatt but in the present treatment 8 miospore genera and 19 species have been recognized, of which 6 species are new. A brief comparison of the present mioflora with comparable assemblages has been given. The abundant occurrence of Lueckisporites (Pot. & Kl.) Potonie and Gigantaerosporites Klaus appears to be very characteristic for the Werfener schiefer mioflora as has been held by Klaus (1953a).

The Upper Permian (Zechstein) strata of the European formations have been sporologically investigated by Potonie and Klaus (1954), Klaus (1955), Leschik (1956), Grebe (1957), Grebe and Schweitzer (1962) and Klaus (1963). Some forms out of these miofloras continue to be represented in the assemblage of Werfener schiefer.

Klaus (1953b) has made valuable contribution towards stratigraphical knowledge of the east alpine hills in Austria on the basis of relative abundance of dispersed spores. Henneley (1958) has given an account of spores and pollen grains from a Permian—Triassic transition in N.S.W. Australia. The zone above the Bulli seam characterized by a dominant species of Apiculatisporis and cristate tetrads in association with other spore types has been shown to be representing Triassic age. Jansonius (1962) has palynologically investigated the Permian to Lower Triassic rocks of Western Canada stating that the occurrence of trilette miospores in comparison to saccate ones is not an important feature in the strata investigated. Balme (1963) has described an early Triassic miospore assemblage from the Kockatea shale occurring in the Perth Basin, Western Australia and has also summed up its phytogeographical significance.

The present spore assemblage has been arranged according to the artificial system of classification proposed by Potonie and Kremp (1954) and subsequently modified by Potonie (1956, 1958 and 1960).

MATERIAL AND METHODS

The material consisting of a grey shale was collected by Dr. D. C. Bharadwaj out of Werfener schiefer, Salzburg—Hallstatt (Nördlisch Einlagerung untereste Trias) Austria in 1954. The shale sample was treated with cold hydrofluoric acid for 48 hours and then the residue was repeatedly washed with water by decantation. The acid free macerate was further treated with cold commercial nitric acid for 72 hours. The washed acid-free sporiferous matter (dark brown in colour) was digested with warm 10 per cent KOH solution for 10 minutes. Then the macerate was centrifuged and washed till it was free from alkali. The slides for miospore analysis.
have been made in Canada balsam. They are deposited in the museum of the Birbal Sahni Institute of Palaeobotany, Lucknow.

DESCRIPTION OF DISPERSED SPORES

<table>
<thead>
<tr>
<th>Anteturma</th>
<th>Pollenites Potonié 1931</th>
</tr>
</thead>
<tbody>
<tr>
<td>Turma</td>
<td>Sacites Erdtman 1947</td>
</tr>
<tr>
<td>Subturma</td>
<td>Monosaccites (Chitaley) Potonié & Kremp 1954</td>
</tr>
<tr>
<td>Infraturma</td>
<td>Striatitii Bharadwaj 1962</td>
</tr>
<tr>
<td>Syn</td>
<td>Striatornati Jansonius 1962</td>
</tr>
</tbody>
</table>

Genus — Crustaesporites (Lesch.) Jansonius 1962

Crustaesporites cf. globosus Leschik 1956

Pl. 1, Fig. 1

Remarks — A solitary specimen of C. globosus has been recorded from the present assemblage. It is monosaccate and has a dark brown saccus as compared to the lighter and thinner central body bearing more or less 7 proximal stripes. Jansonius (1962) seems to be quite correct in envisaging a fundamentally monosaccate organization for the pollen grains of Crustaesporites.

Infraturma Triletesacciti Leschik 1955

Genus — Celleisporites Leschik 1956

Celleisporites cf. densus Leschik 1956

Pl. 1, Fig. 2

Remarks — The occurrence of C. cf. densus is extremely rare in the present assemblage. Only two specimens exhibiting closer similarity with C. densus have been examined but they are distinguishable from the latter in possessing a darker and heavier saccus. The ornamentation of the saccus and the central body is also not clear.

Subturma Disaccites Cookson 1947

Infraturma Striatitii Pant 1954

Genus — Lueckisporites (Pot. & Kl.) Potonié 1958

Remarks — A study of the photographs of the type species and cotype of Lueckisporites i.e. L. virkkiae Pot. & Kl. as well as a large number of the pollen grains closely comparable to this species from the present assemblage reveals that the central body characteristically possesses two proximal intramicroreticulate structured stripes enclosing a horizontal split. Similar specimens exhibiting these characters have been figured by Leschik (1956, Pl. 21, Fig. 17), Grebe (1957, Pl. 5, Fig. 11), Grebe and Schwietzer (1962, Pl. 5, Figs. 3-5) and Klaus (1963, Pl. 11, Figs. 50, 51; Pl. 12, Fig. 52). However, in the diagnosis of L. virkkiae given by Potonié & Klaus (1954, p. 534) occasional occurrence of additional faint splits (Laesurae) parallel to the middle one has been stated. These are neither seen in the type specimens nor in the specimens figured by subsequent workers. Jansonius (1962) and Klaus (1963) have based an emendation of Lueckisporites on a quantitative character that the genus should be restricted to include only those species in which the central body is divided into two proximal stripes enclosing a single horizontal split. This circumscription of Lueckisporites is contrary to the view held by Potonié (1958) that Lueckisporites can include even those specimens where the number of proximal stripes is sometimes more than two. I concur with Potonié's interpretation and believe that the limits of Lueckisporites should be further enlarged to accommodate such forms which are organizationally in agreement with the type species even if they have two or more than two proximal stripes on the central body. Thus the forms referred to Taeniasporites, i.e. T. alatus Kl., T. ortisei Kl., T. labdacus Kl., T. samoilovichii pantii (Jans.) Kl., T. albertae Jans., T. gracilis Jans., T. novimundus Jans., T. hexagonalis Jans., T. interruptus Jans., T. transversundatus Jans., T. noviaulensis Lesch. and T. obex Balme, belong here.

Lueckisporites cf. virkkiae Potonié & Klaus 1954

Pl. 1, Fig. 3

Remarks — The specimen illustrated here is closely comparable to L. virkkiae but it lacks the distinct equatorial thickening as is apparent in the holotype figure. L. cf. virkkiae is predominantly represented in the present assemblage. Occasionally some abnormal triasaccate pollen grains of the same species have been found. Similar tendency has also been noticed and figured by Grebe (1957, Pl. 5, Fig. 15).

Lueckisporites tattooensis Jansonius 1962

Pl. 1, Figs. 4, 5

Description — Bisaccate, bilateral, more or less diploxylonoid pollen grains. Central body light brown, oval along the elongated
axis, mediumly thick bearing two proximal finely intramicroreticulate stripes, usually extending beyond the body wall deep into the sacci, translucent (in comparison to the heavier and opaque sacci) enclosing a narrow parallel split. Sacci dark brown, almost crescent shaped, laterally wide apart and distally slightly inclined, ornamentation obscure.

Comparison — The pollen grains of *L. virkkiae* and *L. ruttneri* Bharad. and Singh have a thicker body wall, coarser ornamentation on the proximal face, broader split and lighter sacci in comparison to *L. tattooensis*. *L. junior* Kl. is distinguishable from *L. tattooensis* by having coarsely ornamented proximal stripes and distinctly intrareticulate sacci.

Remarks — The specimens referable to *L. tattooensis* from the present assemblage measure more or less 80 μ whereas the known size range of the same species is 55-70 μ.

Lueckisporites hallstattensis sp. nov.

Holotype — Pl. 1, Figs. 6, 7

Diagnosis — Known size range 65-100 μ × 50-60 μ, bisaccate pollen grains. Central body oval along the elongated axis bearing two proximal, kidney shaped, intramicroreticulate stripes, enclosing a wide split, sacci crescent shaped, intrareticulate, meshes medium-coarse.

Description — Holotype 93 × 60 μ, slightly diploxylonoid. Central body dark brown about 60 μ in diameter mediumly thick walled, proximal cap split into two equal, kidney shaped, intramicroreticulate, translucent stripes, not bulging beyond the body wall. Sacci less than half circular, equal to or slightly bigger than the body height, the zones of bladder attachment slightly denser, distally separated by a wide saccus free area, laterally usually widely separated sometimes approaching near each other, intrareticulate, meshes mediumly coarse.

Comparison — *L. tattooensis* Jans. is different from *L. hallstattensis* by having bulging type of stripes, narrower split, lighter central body and darker sacci. *L. virkkiae* Pot. & Kl. has thicker body wall and finer ornamentation of the sacci. *L. junior* Kl. is distinctly distinguishable from *L. hallstattensis* by having coarser reticulation of the proximal stripes and monosaccoid appearance. *L. ruttneri* Bharad. and Singh differs from *L. hallstattensis* by having proximal stripes extending beyond the central body and a distal biconvex sulcus. *L. microgranulatus* Kl. is smaller in size and has finer ornamentation of the central body than that of *L. hallstattensis*. *L. parvus* Kl. and *L. globosus* Kl. do not compare with *L. hallstattensis*.

Lueckisporites klausi sp. nov.

Holotype — Pl. 1, Figs. 8, 9

Diagnosis — Known size range 60-80 μ, bilateral bisaccate pollen grains. Central body oval along the elongated axis bearing two proximal, matt to faintly structured, intramicroreticulate stripes enclosing a narrow to wide split (parallel to the stripes). Sacci equal to half or more than half circular, lighter in colour, finely to mediumly coarse.

Description — Holotype 74 × 46 μ, more or less haploxylonoid. Central body dark brown translucent, thick walled, oval along the longest axis of the pollen grains, proximally ornamented with two, almost kidney shaped, matt to faintly intramicroreticulate stripes enclosing a narrow to wide split. Sacci about half circular or more, finely to mediumly coarse, intrareticulate, slightly distally inclined.

Comparison — *L. tattooensis* Jans. has lighter stripes, almost opaque and less than half circular sacci. *L. hallstattensis* distinguishes itself by having subcircular central body with distinctly intramicroreticulate stripes and less than half circular sacci. *L. ruttneri* Bharad. and Singh has got an oval central body (perpendicular to the longest axis) with coarser ornamentation. *L. parvus* Kl. is smaller in size and has got thinner central body. *L. globosus* Kl. and *L. microgranulatus* Kl. do not compare.

Lueckisporites monosaccoides sp. nov.

Holotype — Pl. 1, Figs. 10, 11

Diagnosis — Known size range 60-75 μ, tending to be monosaccate, bilateral, bisaccate pollen grains. Central body circular to subcircular thick-walled bearing two proximal matt to indeterminably sculptured stripes enclosing a wide horizontal split (with respect to the longest axis). Sacci continuous by a broad lateral ledge, may be notched.
Description — Holotype 70×52 μ, slightly diploxylonoid condition apparent. Central body dark brown, thick walled (3 μ) bearing two proximal stripes, not bulging beyond the body wall and enclosing a single uniformly broad about 7 μ wide split. Sacci mediumly coarse.

Comparison — L. virkkiae Pot. & Kl. affords a closer comparison with L. monosaccoides but it differs from the latter by virtue of its distinctly ornamented stripes of the central body and bisaccate nature of the pollen grains. L. klausii sp. nov. is different from L. monosaccoides by having an oval central body, narrower horizontal split and lighter sacci.

Lueckisporites interruptus (Jans.) comb. nov.

Pl. 1, Figs. 12-14

Remarks — The size range of T. interruptus as given by Jansonius is 55 to 65 μ whereas specimens measuring as large as 80 μ have been noticed in the present assemblage. The proximal stripes on the central body vary from 3 to 8 in number, the middle ones being usually interrupted. The ornamentation on the proximal face appears to be matt.

Lueckisporites jansonii sp. nov.

Pl. 1, Figs. 15-16

Holotype — Pl. 1, Fig. 15.

Diagnosis — Known size 80-90 μ, bilateral, bisaccate pollen grains. Central body oval to subcircular in polar view, proximal face bearing 3 to 4 in number prominent, broad, almost matt stripes separated by thinner and broader intexine, sacci half circular to crescent shaped, widely separated laterally, lighter as compared to the central body and meshes mediumly coarse.

Description — Holotype 90×58 μ, slightly diploxylonoid. Central body 54×50 μ, medium to dark brown, thick walled, proximal face ornamented with 3 to 4 in number about 6 μ wide, matt to indeterminably sculptured (opaque) stripes not bulging beyond the limits of the central body. Sacci widely apart laterally, half circular to crescentic, the zones of saccus attachment clearly defined and darker, delimiting an appreciably wide (straight) saccus-free area.

Comparison — L. jansonii possesses an oval central body (elongated along the longest axis) bearing distinctly sculptured proximal stripes and darker sacci. This species distinguishes itself from the rest by having almost matt and opaque proximal stripes of the central body.

Genus — Lunatisporites (Lesch.) Bharadwaj 1962

Lunatisporites sp.

Pl. 2, Fig. 19

Description — Size 75×50 μ, bilateral, bisaccate pollen grain. Central body dark brown, more or less subcircular, 46 μ across, thick walled, matt to indeterminably structured, proximal face bearing about 7 stripes. Sacci crescentic, more or less haploxylonoid, lighter as compared to the central body, the zones of saccus attachment area prominently thickened and darker.
Infraturma *Disaccitriileti* Leschik 1955

Genus — *Illinites* Kosanke 1950

Remarks — The type species of *Illinites* as well as the other species referable to it mostly possess a trilete mark on the central body. This feature differentiates it from *Pitysoporites* (Sew.) Manum.

Illinites delasaucei (Pot. & Kl.)
Grebe & Schweitzer 1962
Pl. 2, Fig. 20

Syn. — See Grebe and Schweitzer 1962.

Description — Bisaccate, bilateral pollen grains. Central body dark brown, vertically oval with truncate ends, characteristically having two longitudinal folds, trilete mark distinctly present, Y-rays small, one ray smaller than the other two.

Infraturma *Disaccitriileti* (Lesch.) Potonié 1958

Genus — *Klausipollenites* Jansonius 1962

Klausipollenites schaubergeri (Pot. & Kl.)
Jansonius 1962
Pl. 2, Figs. 21-24

Remarks — The specimens of *K. schaubergeri* illustrated here are darker in colour as compared to the holotype photograph. This difference is quite understandable on account of the ill-preserved organic matter in the present case. All the specimens examined here are bilateral in which the sacci are usually laterally joined by a broad to narrow ledge giving a monosaccate appearance to the pollen grains.

Klausipollenites cf. *vestitus* Jansonius 1962
Pl. 2, Figs. 25, 26

Remarks — The specimens of *K. cf. vestitus* examined here measure up to 70 μ whereas the known size range of *K. vestitus* is 42-55 μ. Specimens of the former type, though rare in the present assemblage, are haploxylopid, the sacci being almost equal to the height of the central body in contrast to the holotype of *K. vestitus* where the sacci are shorter than the height of the central body. A straight, thinwalled distal area perpendicular to the longest axis of the specimen is prominently discernible. This feature has been reported to be quite characteristic for *K. vestitus* by Jansonius.

Gigantosporites *hallstattensis* Klaus 1963

Pl. 2, Figs. 28, 29

Description — Specimens usually measuring more or less 140 μ in the longest axis,
SINGH — SACCATE POLLEN GRAINS FROM THE LOWER TRIASSIC

may be as big as 185 μ, bilateral, haploxylonoid. Central body vertically oval 100×70 μ, thin walled, appearing intramicroreticulate on both the faces, without striations. The zones of saccus attachment thick and dark brown forming a crest disappearing into the sacci gradually. Sacci dark brown, heavy, having very coarse intrareticulate meshes, may be measuring as wide as 8 μ and enclosing another set of fine meshes.

Gigantosporites grebei sp. nov.
Pl. 2, Figs. 30, 31

Holotype — Pl. 2, Fig. 30.
Diagnosis — Known size 55-70 μ, 80-102 μ, bisaccate, haploxylonoid pollen grains. Central body vertically oval, exine intramicroreticulate on both the faces, without striations. Sacci coming close laterally, distal saccus-free-area thin and wide, the zones of saccus attachment thickened, meshes coarse.

Description — Holotype 102×62 μ. Central body oval (perpendicular to the longest axis), intramicroreticulate on both the faces without any striations or germinal mark. The zones of saccus attachment thick, dark brown, forming about 5 μ wide crest, gradually disappearing into the sacci. Laterally sacci free, sometimes approaching closely, meshes intrareticulate, coarse.

Comparison — G. grebei distinguishes itself from G. hallstattensis by virtue of its smaller size and less coarse meshes of the sacci. G. aleoides Kl. is closely comparable to G. grebei but differs from it in having a markedly thickened (differential) exine of the central body.

Infraturma Podocarpiditi Potonié, Thomson & Theirgart 1950
Genus — Platysaccus (Naum.) Potonié & Klaus 1954

Platysaccus cf. papilionis Potonié & Klaus 1954
Pl. 2, Fig. 32

Remarks — The specimen illustrated here though comparable to P. papilionis differs from it in having coarser and larger meshes of the sacci.

Platysaccus sp.
Pl. 2, Figs. 33-35

Description — Known size about 70×42 μ, pollen grains bisaccate, bilateral, diploxy-

lonoid. Central body dark brown, thick walled, circular, usually 42 μ in diameter, exine almost matt on both the faces. Sacci free laterally, leaving about 14 μ wide saccus-free, straight edged channel, distally intrareticulate, meshes small.

Comparison — The pollen grains of Platysaccus papilionis have smaller central body, relatively larger sacci with coarser and larger meshes as compared to P. sp.

DISCUSSION

The miospore assemblage studied out of a grey shale from Werfener schiefer, Salzburg-Hallstatt, Austria is believed to be of lowermost Triassic age. It consists of 8 saccate miospore genera and 19 species; trilete, monolete, and nonsaccate pollen grains being not represented in the sample investigated. The assemblage as exhibited by miospore genera comprises Lueckisporites, Lunatisporites, Illinites, Klausipollenites, Gigantosporites, Platysaccus, Crustaesporites and Culleisporites. Qualitatively the Werfener schiefer spore complex is much less diverse in forms but quantitatively the distribution of Lueckisporites and Gigantosporites is surprisingly abundant.

Lueckisporites is represented by 8 species i.e. L. cf. virkkiae, L. tattooensis, L. hallstattensis, L. klausii, L. monosaccoides, L. interruptus, L. pallidus and L. jansonii, of these the former two have a copious distribution.

Gigantosporites represented by 2 species, i.e. G. grebei and G. hallstattensis, is dominant in occurrence.

Klausipollenites is represented by K. schauerbergeri, K. cf. vestitus and K. sp. which are not frequently represented.

Illinites represented by one species i.e. I. delasaucet is rare.

The pollen grains referable to the genera Lunatisporites, Platysaccus, Crustaesporites and Culleisporites are rare constituents of the miosflora.

Klaus (1953a) reports the occurrence of Nuskoisporites from the Werfen shales in addition to the genera recorded by me. Werfener schiefer spore flora described here is compared with the assemblage known from the Austrian sediments of Upper Permian described by Potonié and Klaus (1954). From the alpine salt hills these authors have referred the spore taxa to the following 5 miospore genera, i.e. Angui-
sorites, Nuskoisporites, Lueckisporites, Pityosporites (in part Klausipollenites) and Platysaccus. Both the assemblages, i.e. from Werfen and alpine salt hills possess 5 genera in common i.e. Lueckisporites, Klausipollenites, Platysaccus, Illinites and Nuskoisporites. The former assemblage is different from the latter by the presence of Lunatisporites, Crustaesporites and Gigantosporites in addition to the common genera and the absence of Anguisporites.

From the Upper Permian (Zechstein) of European sediments, Leschik (1956) has described a fairly well diversified mioflora from Neuhof (near Fulda). It compares with the Werfener schiefer spore complex by having Nuskoisporites, Culleisporites, Crustaesporites, Illinites, Lueckisporites and Platysaccus. Grebe (1957) and Grebe & Schweitzer (1962) have reported Upper Permian Sporae dispersae from the European sediments which is distinct from the Werfener schiefer assemblage by being more diversified. Among the three assemblages the genera in common are Lueckisporites, Illinites, Klausipollenites, Platysaccus, Nuskoisporites, Crustaesporites and Culleisporites.

Klaus (1963) has sporologically investigated Permain strata of southern Alps. Genera like Nuskoisporites, Illinites, Gigantosporites, Lueckisporites, Klausipollenites and Platysaccus are in common with the Werfener schiefer assemblage.

Hennelly (1958) reports that the zone above the Bulli seam in N.S.W. Australia is characterized by a dominant species of Apiculatisporis along with Quadrisporites (cristate tetrads) in association with some other types appearing to be early Triassic age. The Werfener schiefer mioflora as compared to that of Australian assemblage is distinctly different by the absence of Apiculatisporis and Cirratriradites together with Quadrisporites and megaspores.

The palynological differentiation of the Permian to Lower Triassic rocks in Western Canada has been successfully achieved by Jansonius (1962). The abundant occurrence of striate and non-striate bisaccate pollen grains is reported to be very characteristic for the Lower Triassic assemblage a feature which is in common with that of the Werfener schiefer mioflora and is strikingly significant.

Taeniasporites (= Lueckisporites), Platysaccus and Crustaesporites occurring in the early Triassic of Western Australia (Balme 1963) are in common with that of the Werfener schiefer mioflora, but the other qualitative differences between the two assemblages are significant as the former altogether lacks the preponderance of Gigantosporites which is characteristic for the Werfener schiefer and the latter lacks the characteristic type of trilete mio- and megaspores so well represented in the early Triassic of Western Australia.

CONCLUSION

The Werfener schiefer mioflora, though less diversified, appears to be a continuation of the European Zechstein forms, the former being distinguishable from the latter by the dominance of Lueckisporites and Gigantosporites whereas in the latter Lueckisporites along with Pityosporites and Klausipollenites are dominant.

The abundant occurrence of both striate and non-striate bisaccate pollen grains in the Lower Triassic miofloras of the Canadian and European formations indicates a closer similarity between the two plant communities.

The Upper Triassic (Keuper) miofloras described by Leschik (1955), Klaus (1960) and Bharadwaj and Singh (1964) from the European formations exhibit both qualitative and quantitative amplification of trilete, and monosulcate forms in contrast to the striate and non-striate bisaccate pollen grains so well represented in the Lower Triassic sediments of Canada and Austria.

ACKNOWLEDGEMENTS

I am grateful to Dr. D. C. Bharadwaj for making available the material to me which forms the subject of this paper. My thanks are also due to him for his valuable suggestions and helpful guidance.

REFERENCES

EXPLANATION OF PLATES

(All figures unless otherwise stated are \times 500)

PLATE 1

2. Culleisporites cf. densus Leschik, Ph. No. 249/9.

3. Lueckisporites cf. virkiæ Potonié & Klaus, Ph. No. 249/1.

6, 7. *L. hallstattensis* sp. nov. Ph. Nos. 249/10, 249/29.

10, 11. *L. monosaccoides* sp. nov. Ph. Nos. 249/12, 249/16.

17, 18. *L. pallidus* sp. nov. Ph. Nos. 249/20, 248/1.

PLATE 2

20. Illinites delasaucei (Pot. & Kl.) Grebe and Schweitzer, Ph. No. 249/23.

30, 31. *G. grebei* sp. nov. 249/5, 248/10.

32. Platysaccus cf. papilionis Potonié & Klaus, Ph. No. 249/32.