Diet of Indus Civilization: Reinterpretations from Multi–Site Stable Isotopic Mortuary Analysis
DOI:
https://doi.org/10.54991/jop.2023.1855Keywords:
Indus Civilization, Harappa, Sanauli, Farmana, Diet, WaterAbstract
Several insights on the identification and mobility of the Indus Civilization were provided by previous researchers based on the results limited towards archaeological context. In this study, several such published data of Mortuary samples from the major urban centre of Harappa, the eastern frontier town of Farmana, and the post–urban necropolis at Sanauli are re–evaluated in context with the modern dental samples. The results are compared to the compositional signatures found within teeth from modern humans from the USA, East Asia, Mexico and Bulgaria, which is expected to show variance in their isotopic signature depending upon regional level precipitation and diet. The results from δ18O signatures from the Indus Valley point towards dependence on riverine water for drinking.
सारांश
पूर्व में शोधकर्ताओं द्वारा सिंधु सभ्यता की पहचान एवं गतिशीलता पर अनेक अंतर्दृष्टियां प्रदान की गई जो पुरातात्विक संदर्भ तक सीमित परिणामों पर आधारित थीं। इस अध्ययन में, हड़प्पा के प्रमुख शहरी केंद्र, फरमाणा के पूर्वी सीमांत शहर तथा सनौली जैसे बड़े शहरों में स्थित शवगृह से एकत्रित नमूनों के प्रकाशित आंकड़ों का आधुनिक दंत नमूनों के संदर्भ में पुनर्मूल्यांकन किया गया है। परिणामों की तुलना संयुक्त राज्य अमेरिका, पूर्वी एशिया, मैक्सिको एवं बुल्गारिया में आधुनिक मानव के दांतों के भीतर पाए जाने वाले संरचनात्मक चिन्ह्कों से की गई है, जिससे उनके समस्थानिक चिन्ह्कों में भिन्नता दिखाई देने की उम्मीद की गई है, जो क्षेत्रीय अवक्षेपण तथा आहार पर निर्भर करता है। सिंधु घाटी से प्राप्त δ18O चिन्ह्कों के परिणामों से पेयजल हेतु नदी के पानी पर निर्भरता की तरफ संकेत होता है।
Downloads
Metrics
References
Ajaz K & Jan V 2002. Water balance of the Indus River Basin and moisture source in the Karakoram and western Himalayas: Implications from hydrogen and oxygen isotopes in river water. Journal of. Geophysical Research–Atmosphere 107: ACH 9–1–ACH 9–12. DOI: https://doi.org/10.1029/2000JD000253
Ambrose SH & Norr L 1993. Experimental Evidence for the Relationship of the Carbon Isotope Ratios of Whole Diet and Dietary Protein to Those of Bone Collagen and Carbonate. In: Lambert JB & Grupe G (Editors)–Prehistoric Human Bone: Archaeology at the Molecular Level. Springer Berlin Heidelberg, Berlin, Heidelberg 1–37. DOI: https://doi.org/10.1007/978-3-662-02894-0_1
Bates J, Petrie C & Singh R 2018. Cereals, calories and change: exploring approaches to quantification in Indus archaeobotany. Archaeological and Anthropological Sciences 10: 1703–1716. DOI: https://doi.org/10.1007/s12520-017-0489-2
Budd P, Montgomery J, Evans J & Barreiro B 2000. Human tooth enamel as a record of the comparative lead exposure of prehistoric and modern people. Science of the Total Environment 263: 1–10. DOI: https://doi.org/10.1016/S0048-9697(00)00604-5
Cerling TE & Harris JM 1999. Carbon isotope fractionation between diet and bioapatite in ungulate mammals and implications for ecological and paleoecological studies. Oecologia 120: 347–363. DOI: https://doi.org/10.1007/s004420050868
Chenery C 2003. Amesbury Archer may have come from Central Europe. TrAC Trends in Analytical Chemistry 22: III–III
Chenery CA, Pashley V, Lamb AL, Sloane HJ & Evans JA 2012. The oxygen isotope relationship between the phosphate and structural carbonate fractions of human bioapatite. Rapid Communication in. Mass Spectrometry 26: 309–319. DOI: https://doi.org/10.1002/rcm.5331
Chesson LA, Tipple BJ, Youmans LV, O’Brien MA & Harmon MM 2018. Forensic Identification of Human Skeletal Remains Using Isotopes: A Brief History of Applications from Archaeological Dig Sites to Modern Crime Scenes. In: Latham KE, Bartelink EJ & Finnegan M (Editors)–New Perspectives in Forensic Human Skeletal Identification, Academic Press: 157–173. DOI: https://doi.org/10.1016/B978-0-12-805429-1.00014-4
Dalai TK, Bhattacharya SK & Krishnaswami S 2002. Stable isotopes in the source waters of the Yamuna and its tributaries: Seasonal and altitudinal variations and relation to major cations. Hydrological. Processes 16: 3345–3364. DOI: https://doi.org/10.1002/hyp.1104
Dansgaard W 1964. Stable isotopes in precipitation. Tellus 16: 436–468. DOI: https://doi.org/10.1111/j.2153-3490.1964.tb00181.x
Dupras TL & Schwarcz HP 2001. Strangers in a strange land: Stable isotope evidence for human migration in the Dakhleh Oasis, Egypt. Journal of Archaeological Science 28: 1199–1208. DOI: https://doi.org/10.1006/jasc.2001.0640
Ehleringer JR, Thompson AH, Podlesak DW, Bowen GJ, Chesson LA, Cerling TE, Park T, Dostie P & Schwarcz H 2010. A framework for the incorporation of isotopes and isoscapes in geospatial forensic investigations. In: Isoscapes: Understanding Movement, Pattern, and Process on Earth through Isotope Mapping. Springer Netherlands, pp. 357–387. DOI: https://doi.org/10.1007/978-90-481-3354-3_17
Froehle AW, Kellner CM & Schoeninger MJ 2012. Multivariate carbon and nitrogen stable isotope model for the reconstruction of prehistoric human diet. American Journal of Physical Anthropology 147: 352–369. DOI: https://doi.org/10.1002/ajpa.21651
Hillson S 2005. Teeth (2nd Edition, Cambridge Manuals in Archaeology). Cambridge: Cambridge University Press.
Juarez C, 2011. Geolocation: A Pathway to Identification for Deceased Undocumented Border Crossers. University of California–Santa Cruz.
Juarez, Chelsey 2011. Geolocation: A Pathway to Identification for Deceased Undocumented Border Crossers. University of California–Santa Cruz, ProQuest Dissertations Publishing, 3452521.
Kamenov GD & Curtis JH 2017. Using Carbon, Oxygen, Strontium, and Lead Isotopes in Modern Human Teeth for Forensic Investigations: A Critical Overview Based on Data from Bulgaria. Journal of forensic sciences 62(6): 1452–1459. DOI: https://doi.org/10.1111/1556-4029.13462
Kenoyer JM, Price TD & Burton JH 2013. A new approach to tracking connections between the Indus Valley and Mesopotamia: initial results of strontium isotope analyses from Harappa and Ur. Journal of. Archaeological Science 40: 2286–2297. DOI: https://doi.org/10.1016/j.jas.2012.12.040
Kohn MJ 1996. Predicting animal δ18O: Accounting for diet and physiological adaptation. Geochimica et Cosmochimica Acta 60: 4811–4829. DOI: https://doi.org/10.1016/S0016-7037(96)00240-2
Kohn MJ, Schoeninger MJ & Barker WW 1999. Altered states: effects of diagenesis on fossil tooth chemistry. Geochimica et Cosmochimica Acta 63: 2737–2747. DOI: https://doi.org/10.1016/S0016-7037(99)00208-2
Lee–Thorp J, Sealy J & van der Merwe N 1989. Stable Carbon Isotope ratio differences between bone collagen and bone apatite and their relationship to diet. Journal of Archaeological Science: 585–599. DOI: https://doi.org/10.1016/0305-4403(89)90024-1
Longinelli A 1984. Oxygen isotopes in mammal bone phosphate: A new tool for paleohydrological and paleoclimatological research? Geochimica & Cosmochimica Acta 48: 385–390. DOI: https://doi.org/10.1016/0016-7037(84)90259-X
Luz B, Cormie AB & Schwarcz HP 1990. Oxygen isotope variations in phosphate of deer bones. Geochimica et Cosmochimica Acta 54: 1723–1728. DOI: https://doi.org/10.1016/0016-7037(90)90403-8
Luz B & Kolodny Y 1985. Oxygen isotope variations in phosphate of biogenic apatites, IV. Mammal teeth and bones. Earth and Planetary Science Letters 75: 29–36. DOI: https://doi.org/10.1016/0012-821X(85)90047-0
Luz B & Kolodny Y 1989. Oxygen isotope variation in bone phosphate. Applied Geochemistry 4: 317–323. DOI: https://doi.org/10.1016/0883-2927(89)90035-8
Passey BH & Cerling T 2002. Tooth enamel mineralization in ungulates: Implications for recovering a primary isotopic time–series. Geochimica & Cosmochimica Acta 66: 3225–3234. DOI: https://doi.org/10.1016/S0016-7037(02)00933-X
Passey BH, Cerling TE, Schuster GT, Robinson TF, Roeder BL & Krueger SK 2005a. Inverse methods for estimating primary input signals from time–averaged isotope profiles. Geochimica & Cosmochimica Acta 69: 4101–4116. DOI: https://doi.org/10.1016/j.gca.2004.12.002
Passey BH, Robinson TF, Ayliffe LK, Cerling TE, Sphonheimer M, Dearing MD, Roeder BL & Ehleringer JR 2005b. Carbon isotope fractionation between diet, breath CO2, and bioapatite in different mammals. Journal of Archaeological Science 32: 1459–1470. DOI: https://doi.org/10.1016/j.jas.2005.03.015
Posey RG 2011. Development and validation of a spatial prediction model for forensic geographical provenancing of human remains. Unpublished PhD dissertation, University of East Anglia55.
Price TD, Johnson CM, Ezzo JA, Ericson J & Burton JH 1994. Residential Mobility in the Prehistoric Southwest United States: A Preliminary Study using Strontium Isotope Analysis. Journal of Archaeological Science 21: 315–330. DOI: https://doi.org/10.1006/jasc.1994.1031
Regan LA 2006. Isotopic Determination of Region of Origin in Modern Peoples: Applications for Identification of U.S. War–Dead from the Vietnam Conflict. University of Florida108.
Stevens RE, Lister AM & Hedges REM 2006. Predicting diet, trophic level and palaeoecology from bone stable isotope analysis: a comparative study of five red deer populations. Oecologia 149: 12–21. DOI: https://doi.org/10.1007/s00442-006-0416-1
Sullivan CH & Krueger HW 1981. Carbon isotope analysis of separate chemical phases in modern and fossil bone. Nature 292: 333. DOI: https://doi.org/10.1038/292333a0
Tieszen LL & Fagre T 1993. Carbon Isotopic Variability in Modern and Archaeological Maize. Journal of Archaeological Science 20: 25–40. DOI: https://doi.org/10.1006/jasc.1993.1002
Valentine BT 2013. Immigrant Identity in the Indus Civilization: A Multi–Site Isotopic Mortuary Analysis. University of Florida 86.
Weber S & Kashyap A 2016. The vanishing millets of the Indus civilization. Archaeological and Anthropological Sciences 8: 9–15. DOI: https://doi.org/10.1007/s12520-013-0143-6
White CD, Spence MW, Longstaffe FJ & Law KR 2004. Demography and ethnic continuity in the Tlailotlacan enclave of Teotihuacan: The evidence from stable oxygen isotopes. Journal of Anthropological Archaeology 23: 385–403 DOI: https://doi.org/10.1016/j.jaa.2004.08.002
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Journal of Palaeosciences

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.