Rare earth element proxy for distinguishing marine versus freshwater Ediacaran fossils

Authors

  • Gregory Retallack Department of Earth Sciences, University of Oregon, Eugene, Oregon, USA 97403-1272

DOI:

https://doi.org/10.54991/jop.2024.1874

Keywords:

REE, Ediacaran, palaeosalinity, vendobiont, Newfoundland

Abstract

Ediacaran fossils and sedimentary rocks are controversial for whether they are marine or non-marine, and this study applies the test of light rare earth over heavy rare earth weight ratios (LYREE/HYREE) to a variety of Ediacaran siliciclastic and carbonate fossil matrices. Holocene soils have light-YREE-enriched arrays (LYREE/HYREE>4.8) and modern deep marine clays have heavy-YREE-enriched arrays (LYREE/HYREE<2.7). Flat arrays of fluvial and shallow marine siliciclastic sediments (LYREE/HYREE 2.7-4.8) are indistinguishable by this proxy. This proxy has been applied to a variety of Ediacaran and Cambrian rocks, for which confounding provenance effects were minimized by comparing marine and non-marine pairs within the same formations. Many samples were within the ambiguous zone (LYREE/HYREE 2.7-4.8), but Ediacaran red beds from Newfoundland, and some beds from China, Namibia, central and South Australia showed diagnostic continental, terrestrial LYREE/HYREE weight ratios of 4.8 to 11.3. A grey tempestite from Newfoundland, a grey sandstone from California, and grey dolostones from Australia and Namibia showed marine LYREE/HYREE weight ratios of 2.7 or less, from the same provenance as terrestrial samples. This new criterion for distinguishing marine from non-marine Ediacaran rocks is supported also by boron content, Ge/Si ratios, and eolian interbeds. Furthermore, new analyses correctly interpreted trilobite and Cloudina beds as marine. One surprisingly secure result is that fossiliferous Ediacaran rocks of Newfoundland were not formed in a deep ocean, but on coastal plains. Some fossiliferous Newfoundland beds have LYREE/HYREE weight ratios of as much as 6.0-11.3, found only in paleosols.

सारांश

एडियाकरन जीवाश्म और तलछटी चट्टानें इस बात को लेकर विवादास्पद हैं कि वे समुद्री हैं या गैर-समुद्री, और यह अध्ययन विभिन्न प्रकार के एडियाकरन सिलिसिलास्टिक और कार्बोनेट जीवाश्म मैट्रिक्स पर भारी दुर्लभ पृथ्वी तत्व भार अनुपात (LYREE/HYREE) पर हल्के दुर्लभ पृथ्वी तत्व का परीक्षण लागू करता है। होलोसीन मृदा में हल्का-YREE-समृद्ध व्यूह (LYREE/ HYREE >4.8) तथा आधुनिक गभीर समुद्री मृदा में भारी-YREE-समृद्ध व्यूह (LYREE/HYREE <2.7) हैं। इस प्रॉक्सी द्वारा नदी और उथले समुद्री सिलिक्लास्टिक तलछट (LYREE/HYREE 2.7-4.8) की सपाट श्रृंखलाएं अप्रभेद्य हैं। इस प्रॉक्सी को विभिन्न प्रकार के एडियाकरन और कैंब्रियन चट्टानों पर लागू किया गया है, जिसके लिए समान संरचनाओं के भीतर समुद्री और गैर-समुद्री जोड़ों की तुलना करके भ्रमित उद्गम प्रभाव को कम किया गया था। संदिग्ध मण्डल  (LYREE/HYREE 2.7-4.8) में अनेक नमूने थे परंतु न्यूफ़ाउंडलैंड से प्राप्त ईडियाकारन लाल संस्तरें तथा चीन, नामीबिया, मध्य एवं दक्षिण ऑस्ट्रेलिया से प्राप्त कुछेक संस्तरों ने विभेदक महाद्वीपीय स्थलीय ने 4.8 से 11.3 के LYREE/HYREE भार अनुपात दर्शाए। स्थलीय नमूनों के रूप में उसी उद्गम-क्षेत्र से 2.7 या उससे कम के न्यूफ़ाउंडलैंड से धूसर टेंपेस्टाइट, कैलिफ़ोर्निया से धूसर बलुआ पत्थर एवं ऑस्ट्रेलिया व नामीबिया से धूसर डोलोअश्म समुद्री LYREE/HYREE भार अनुपात दर्शाए। गैर-समुद्री ईडियाकारन शैलों से प्राप्त समुद्री प्रभाव विभेदित करने हेतु यह नूतन मानदंड बोरॉन अंतर्वस्तु, Ge/Si अनुपातों एवं ईओलियन अंतसंस्तरों से भी समर्थित है। और, समुद्री के रूप में व्याख्यायित ट्रिलोबाइट एवं क्लोडिना संस्तरों की सटीक नूतन व्याख्या करता है। विस्मयकारी सुद्रढ़ निष्कर्ष है कि न्यूफ़ाउंडलैंड की जीवाश्ममय ईडियाकारन शैल गहरे महासागर में नहीं गठित हुए थे, परंतु तटीय मैदानों में हुए थे। कुछेक जीवाश्ममय न्यूफ़ाउंडलैंड संस्तरों में 6.0-11.3 जितने के LYREE/HYREE भार अनुपातों के हैं, जो पुरानिखतों में ही व्याप्त हैं।

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Allwood AC, Kamber BS, Walter MR, Burch IW & Kanik I 2010. Trace elements record depositional history of an Early Archean stromatolitic carbonate platform. Chemical Geology 270: 148−163. https://doi.org/10.1016/j.chemgeo.2009.11.01 DOI: https://doi.org/10.1016/j.chemgeo.2009.11.013

Anaya–Gregorio A, Armstrong–Altrin JS, Machain–Castillo ML, Montiel–García PC & Ramos–Vázquez MA 2018. Textural and geochemical characteristics of late Pleistocene to Holocene fine–grained deep–sea sediment cores (GM6 and GM7), recovered from southwestern Gulf of Mexico. Journal of Palaeogeography 7: 1−19. https://doi.org/10.1186/s42501–018–0005–3 DOI: https://doi.org/10.1186/s42501-018-0005-3

Bau M 1996. Controls on the fractionation of isovalent trace elements in magmatic and aqueous systems: evidence from Y/Ho, Zr/Hf, and lanthanide tetrad effect. Contributions to Mineralogy and Petrology 123: 323−333. https://doi.org/10.1007/s00410005015 DOI: https://doi.org/10.1007/s004100050159

Bayon G, Toucanne S, Skonieczny C, André L, Bermell S, Cheron S, Dennielou B, Etoubleau J, Freslon N, Gauchery T & Germain Y 2015. Rare earth elements and neodymium isotopes in world river sediments revisited. Geochimica et Cosmochimica Acta 170: 17−38. https://dx.doi.org/10.1016/j.gca.2015.08.001 DOI: https://doi.org/10.1016/j.gca.2015.08.001

Berner RA & Raiswell R 1984. C/S method for distinguishing freshwater from marine sedimentary rocks. Geology 12: 365−368. https://doi.org/10.1130/0091–7613(1984)12<365: CMFDFF>2.0.C DOI: https://doi.org/10.1130/0091-7613(1984)12<365:CMFDFF>2.0.CO;2

Beyth M, Stern RJ, Altherr R & Kröner A 1994. The late Precambrian Timna igneous complex, southern Israel: evidence for comagmatic–type sanukitoid monzodiorite and alkali granite magma. Lithos 31: 103−124. https://doi.org/10.1016/0024–4937(94)90003–5 DOI: https://doi.org/10.1016/0024-4937(94)90003-5

Bolhar R, Kamber BS, Moorbath S, Fedo CM & Whitehouse MJ 2004. Characterisation of early Archaean chemical sediments by trace element signatures. Earth and Planetary Science Letters 222: 43−60. https://doi.org/10.1016/j.epsl.2004.02.0 DOI: https://doi.org/10.1016/j.epsl.2004.02.016

Bolhar R & Van Kranendonk MJ 2007. A non–marine depositional setting for the northern Fortescue Group, Pilbara Craton, inferred from trace element geochemistry of stromatolitic carbonates. Precambrian Research 155: 229−250. https://doi.org/10.1016/j.precamres.2007.02.0 DOI: https://doi.org/10.1016/j.precamres.2007.02.002

Bolhar R, Van Kranendonk MJ & Kamber BS 2005. A trace element study of siderite–jasper banded iron formation in the 3.45 Ga Warrawoona Group, Pilbara Craton—formation from hydrothermal fluids and shallow seawater. Precambrian Research 137: 93−114. https://doi.org/10.1016/j.precamres.2005.02.001 DOI: https://doi.org/10.1016/j.precamres.2005.02.001

Bottjer DJ, Hagadorn JW & Dornbos SQ 2000. The Cambrian substrate revolution. GSA Today 10: 1–7.

Bouma A 1964. Turbidites. Developments in Sedimentology 3: 247−256. DOI: https://doi.org/10.1016/S0070-4571(08)70967-1

Braun JJ, Viers J, Dupré B, Polve M, Ndam J & Muller JP 1998. Solid/liquid REE fractionation in the lateritic system of Goyoum, East Cameroon: the implication for the present dynamics of the soil covers of the humid tropical regions. Geochimica et Cosmochimica Acta 62: 273−299. https://doi.org/10.1016/S0016–7037(97)00344 DOI: https://doi.org/10.1016/S0016-7037(97)00344-X

Briggs DE 2015. The Cambrian explosion. Current Biology 25: 864−868. https://doi.org/10.1016/j.cub.2015.04.047 DOI: https://doi.org/10.1016/j.cub.2015.04.047

Brito P, Prego R, Mil–Homens M, Caçador I & Caetano M 2018. Sources and distribution of yttrium and rare earth elements in surface sediments from Tagus Estuary, Portugal. Science of the Total Environment 621: 317−325. https://doi.org/10.1016/j.scitotenv.2017.11.24 DOI: https://doi.org/10.1016/j.scitotenv.2017.11.245

Caccia VG & Millero FJ 2007. Distribution of yttrium and rare earths in Florida Bay sediments. Marine Chemistry 104: 171−185. https://doi.org/10.1016/j.marchem.2006.11.001 DOI: https://doi.org/10.1016/j.marchem.2006.11.001

Cai Y, Cortijo I, Schiffbauer JD & Hua H 2017. Taxonomy of the late Ediacaran index fossil Cloudina and a new similar taxon from South China. Precambrian Research 298: 146−156. https://doi.org/10.1016/j.precamres.2017.05.01 DOI: https://doi.org/10.1016/j.precamres.2017.05.016

Chen Z, Zhou C, Xiao S, Wang W, Guan C, Hua H & Yuan X 2014. New Ediacara fossils preserved in marine limestone and their ecological implications. Nature Scientific Reports 4: 4180. https://doi.org/10.1038/srep04180 DOI: https://doi.org/10.1038/srep04180

Compton JS, White RA & Smith M 2003. Rare earth element behavior in soils and salt pan sediments of a semi–arid granitic terrain in the Western Cape, South Africa. Chemical Geology 201: 239−255. https://doi.org/10.1016/S0009–2541(03)00239–0 DOI: https://doi.org/10.1016/S0009-2541(03)00239-0

Corsetti FA, Awramik SM, Pierce D & Kaufman AJ 2000. Using chemostratigraphy to correlate and calibrate unconformities in Neoproterozoic strata from the southern Great Basin of the United States. International Geology Review 42: 516–533. https://doi.org/10.1080/00206810009465096 DOI: https://doi.org/10.1080/00206810009465096

Corsetti FA & Hagadorn JW 2003. The Precambrian–Cambrian transition in the southern Great Basin, USA. The Sedimentary Record 1: 4−8. DOI: https://doi.org/10.2110/sedred.2003.1.4

Corsetti FA & Kaufman AJ 1994. Chemostratigraphy of Neoproterozoic–Cambrian units, White–Inyo Region, eastern California and western Nevada; implications for global correlation and faunal distribution. Palaios 9: 211–219. https://doi.org/10.2307/351510 DOI: https://doi.org/10.2307/3515107

Das BK, Gaye B & Kaur P 2008. Geochemistry of Renuka Lake and wetland sediments, Lesser Himalaya (India): implications for source–area weathering, provenance, and tectonic setting. Environmental Geology 54: 147−163. https://doi.org/10.1007/s00254–007–0801–z DOI: https://doi.org/10.1007/s00254-007-0801-z

Das BK & Haake BG 2003. Geochemistry of Rewalsar Lake sediment, Lesser Himalaya, India: implications for source–area weathering, provenance and tectonic setting. Geoscience Journal 7: 299−312. https://doi.org/10.1007/BF02919560 DOI: https://doi.org/10.1007/BF02919560

Davies G & Woodroffe CD 2010. Tidal estuary width convergence: theory and form in North Australian estuaries. Earth Surface Processes and Landforms 35: 737−749. https://doi.org/10.1002/esp.1864 DOI: https://doi.org/10.1002/esp.1864

Davies NS, Gibling MR & Rygel MC 2011. Alluvial facies evolution during the Palaeozoic greening of the continents: case studies, conceptual models and modern analogues. Sedimentology 58: 220−258. https://doi.org/10.1111/j.1365–3091.2010.01215.x DOI: https://doi.org/10.1111/j.1365-3091.2010.01215.x

Dias AS & Barriga FJ 2006. Mineralogy and geochemistry of hydrothermal sediments from the serpentinite–hosted Saldanha hydrothermal field (36 34′ N; 33 26′ W) at MAR. Marine Geology 225: 157−175. https://doi.org/10.1016/j.margeo.2005.07.01 DOI: https://doi.org/10.1016/j.margeo.2005.07.013

dos Santos JCB, Le Pera E, de Oliveira CS, de Souza Junior VS, de Araújo Pedron F, Corrêa MM & de Azevedo AC 2019. Impact of weathering on REE distribution in soil–saprolite profiles developed on orthogneisses in Borborema Province, NE Brazil. Geoderma 347: 103−117. https://doi.org/10.1016/10.1016/j.geoderma.2019.03.04 DOI: https://doi.org/10.1016/j.geoderma.2019.03.040

Duddy LR 1980. Redistribution and fractionation of rare–earth and other elements in a weathering profile. Chemical Geology 30: 363−381. https://doi.org/10.1016/0009–2541(80)90102–3 DOI: https://doi.org/10.1016/0009-2541(80)90102-3

Fedo CM & Cooper J D 2001. Sedimentology and sequence stratigraphy of Neoproterozoic and Cambrian units across a craton–margin hinge zone, southeastern California, and implications for the early evolution of the Cordilleran margin. Sedimentary Geology 141: 501–522. https://doi.org/10.1016/S0037–0738(01)00088 DOI: https://doi.org/10.1016/S0037-0738(01)00088-4

Fedonkin MA, Gehling JG, Grey K, Narbonne GM & Vickers–Rich P 2008. The Rise of Animals: Evolution and Diversification of the Kingdom Animalia. Johns Hopkins University Press, Baltimore, 344 p.

Finnegan S, Gehling JG & Droser ML 2019. Unusually variable paleocommunity composition in the oldest metazoan fossil assemblages. Paleobiology 45: 235−245. https://doi.org/10.1017/pab.2019.1 DOI: https://doi.org/10.1017/pab.2019.1

Fowler AD & Doig R 1983. The significance of europium anomalies in the REE spectra of granites and pegmatites, Mont Laurier, Quebec. Geochimica et Cosmochimica Acta 47: 1131−1137. https://doi.org/10.1016/0016–7037(83)90243–0 DOI: https://doi.org/10.1016/0016-7037(83)90243-0

Garcia D, Joseph P, Maréchal B & Moutte J 2004. Patterns of geochemical variability in relation to turbidite facies in the Grès d’Annot Formation. In: Joseph P & Lomas SA (Editors)− Deep–Water Sedimentation in the Alpinje Zone of SE France: new perspectives on the Grès d’Arnot and related systems. Special Publication Geological Society of London 221: 349−365. DOI: https://doi.org/10.1144/GSL.SP.2004.221.01.19

Gehling JG 2000. Environmental interpretation and a sequence stratigraphic framework for the terminal Proterozoic Ediacara Member within the Rawnsley Quartzite, South Australia. Precambrian Research 100: 65–95. https://doi.org/10.1016/S0301–9268(99)00069– DOI: https://doi.org/10.1016/S0301-9268(99)00069-8

Gehling GJ & Droser ML 2013. How well do fossil assemblages of the Ediacara Biota tell time? Geology 41: 447–450. https://doi.org/10.1130/G33881.1 DOI: https://doi.org/10.1130/G33881.1

Glaessner MF & Walter MR 1975. New Precambrian fossils from the Arumbera Sandstone, Northern Territory, Australia. Alcheringa 1: 59−69. https://doi.org/10.1080/03115517508619480 DOI: https://doi.org/10.1080/03115517508619480

Grazhdankin D & Seilacher A 2002. Underground Vendobionta from Namibia. Palaeontology 45: 57−78, https://doi.org/10.1111/1475–4983.00227. DOI: https://doi.org/10.1111/1475-4983.00227

Hagadorn JW, Fedo M & Waggoner B 2000. Early Cambrian Ediacaran–type fossils from California. Journal of Paleontology 74: 731–740. https://doi.org/10.1666/0022–3360(2000)074<0731: ECETFF>2.0.CO;2 DOI: https://doi.org/10.1666/0022-3360(2000)074<0731:ECETFF>2.0.CO;2

Harlavan Y, Erel Y & Blum JD 2009. The coupled release of REE and Pb to the soil labile pool with time by weathering of accessory phases, Wind River Mountains, WY. Geochimica et Cosmochimica Acta 73: 320−336. https://doi.org/10.1016/j.gca.2008.11.002 DOI: https://doi.org/10.1016/j.gca.2008.11.002

Hebert CL, Kaufman AJ, Penniston–Dorland SC & Martin AJ 2010. Radiometric and stratigraphic constraints on terminal Ediacaran (post–Gaskiers) glaciation and metazoan evolution. Precambrian Research 182: 402−412. https://doi.org/ 10.1016/j.precamres.2010.07.008 DOI: https://doi.org/10.1016/j.precamres.2010.07.008

Hongo Y & Nozaki Y 2001. Rare earth element geochemistry of hydrothermal deposits and Calyptogena shell from the Iheya Ridge vent field, Okinawa Trough. Geochemical Journal 35: 347−354. https://doi.org/10.2343/geochemj.35.347 DOI: https://doi.org/10.2343/geochemj.35.347

Hu X–M 2013. Distribution, types and origins of Phanerozoic marine red beds. Bulletin of Mineralogy Petrology and Geochemistry 32: 355−342. http://www.bmpg.ac.cn/CN/Y2013/V32/I3/335

Ichaso AA, Dalrymple RW & Narbonne GM 2007. Paleoenvironmental and basin analysis of the late Neoproterozoic (Ediacaran) upper Conception and St. John’s Groups, west Conception Bay, Newfoundland. Canadian Journal of Earth Sciences 44: 25–41. https://doi.org/10.1139/e06–09 DOI: https://doi.org/10.1139/e06-098

Ivantsov AY, Narbonne GM, Trusler PW, Greentree C & Vickers–Rich P 2016. Elucidating Ernietta: new insights from exceptional specimens in the Ediacaran of Namibia. Lethaia 49: 540−554. https://doi.org/10.1111/let.12164 DOI: https://doi.org/10.1111/let.12164

Jaireth S, Hoatson DM & Miezitis Y 2014. Geological setting and resources of the major rare–earth–element deposits in Australia. Ore Geology Reviews 62: 72−128. https://doi.org/10.1016/j.oregeorev.2014.02.00 DOI: https://doi.org/10.1016/j.oregeorev.2014.02.008

Jenkins RJF, Ford CH & Gehling JG 1983. The Ediacara Member of the Rawnsley Quartzite: the context of the Ediacara assemblage (late Precambrian, Flinders Ranges). Geological Society of Australia Journal 30: 101–119. https://doi.org/10.1080/00167618308729240 DOI: https://doi.org/10.1080/00167618308729240

Jensen S, Gehling JG & Droser ML 1998. Ediacara–type fossils in Cambrian sediments. Nature 393: 567−569. https://doi.org/10.1038/31215 DOI: https://doi.org/10.1038/31215

Kärnefelt I, Mattsson JE & Thell A 1993. The lichen genera Arctocetraria, Cetraria, and Cetrariella (Parmeliaceae) and their presumed evolutionary affinities. Bryologist 96: 394–404. https://doi.org/10.2307/3243869 DOI: https://doi.org/10.2307/3243869

Kiminami K & Fujii K 2007. The relationship between major element concentration and grain size within sandstones from four turbidite sequences in Japan. Sedimentary Geology 195: 203−215. https://doi.org/10.1016/j.sedgeo.2006.08.002 DOI: https://doi.org/10.1016/j.sedgeo.2006.08.002

King AF 1988. Geology of the Avalon Peninsula, Newfoundland: St Johns, Newfoundland, Newfoundland Department of Mines Map 88–01, scale 1: 250,000.

Korsch RJ, Roser BP & Kamprad JL 1993. Geochemical, petrographic and grain–size variations within single turbidite beds. Sedimentary Geology 83: 15−35. https://doi.org/ 10.1016/0037–0738(93)90180– DOI: https://doi.org/10.1016/0037-0738(93)90180-D

Lee JH & Byrne RH 1992. Complexation of trivalent rare earth elements (Ce, Eu, Gd, Tb, Yb) by carbonate ions. Geochimica et Cosmochimica Acta 57: 295–302. https://doi.org/ 10.1016/0016–7037(93)90432– DOI: https://doi.org/10.1016/0016-7037(93)90432-V

Lenton TM & Watson AJ 2004. Biotic enhancement of weathering, atmospheric oxygen and carbon dioxide in the Neoproterozoic. Geophysical Research Letters 31: L05202. https://doi.org/10.1029/2003GL018802 DOI: https://doi.org/10.1029/2003GL018802

Ling H–F, Chen X, Li D–A, Wang D, Shields–Zhou GA & Zhu M 2013. Cerium anomaly variations in Ediacaran–earliest Cambrian carbonates from the Yangtze Gorges area, South China: implications for oxygenation of coeval shallow seawater. Precambrian Research 225: 110−127. https://doi.org/10.1016/j.precamres.2011.10.011 DOI: https://doi.org/10.1016/j.precamres.2011.10.011

Linnemann U, Pidal AP, Hofmann M, Drost K, Quesada C, Gerdes A, Marko L, Gärtner A, Zieger J, Ulrich J, Krause R, Vickers–Rich P & Horak J 2018. A~565 Ma old glaciation in the Ediacaran of peri–Gondwanan West Africa. International Journal of Earth Science 107: 885−911. https://doi.org/10.1007/s00531–017–1520–7 DOI: https://doi.org/10.1007/s00531-017-1520-7

Liu AG, Kenchington CG & Mitchell EG 2015. Remarkable insights into the paleoecology of the Avalonian Ediacaran macrobiota. Gondwana Research 27: 1355−1380. https://doi.org/10.1016/j.gr.2014.11.002 DOI: https://doi.org/10.1016/j.gr.2014.11.002

Liu AG, Matthews JJ, Menon LR, McIlroy D & Brasier MD 2014. Haootia quadriformis n. gen., n. sp., interpreted as a muscular cnidarian impression from the Late Ediacaran period (approx. 560 Ma). Proceedings of the Royal Society B281: 20141202. https://doi.org/10.1098/rspb.2014.1202 DOI: https://doi.org/10.1098/rspb.2014.1202

Liu AG, Matthews JJ, Menon LR, McIlroy D & Brasier MD 2015. The arrangement of possible muscle fibres in the Ediacaran taxon Haootia quadriformis. Proceedings of the Royal Society B282: 2014294. https://doi.org/10.1098/rspb.2014.2949 DOI: https://doi.org/10.1098/rspb.2014.2949

Liu AG, Mcllroy D & Brasier MD 2010. First evidence for locomotion in the Ediacara biota from the 565 Ma Mistaken Point Formation, Newfoundland. Geology 38: 123−126. https://doi.org/10.1130/G30368.1 DOI: https://doi.org/10.1130/G30368.1

Mángano MG, Buatois LA, Waisfeld BG, Muñoz DF, Vaccari NE & Astini RA 2021. Were all trilobites fully marine? Trilobite expansion into brackish water during the early Palaeozoic. Proceedings of the Royal Society B288: 2020.2263. https://doi.org/10.1098/rspb.2020.2263 DOI: https://doi.org/10.1098/rspb.2020.2263

Mawson D & Segnit ER 1949. Purple slates of the Adelaide System. Transactions of the Royal Society of South Australia 72: 276–280.

McLennan SM 1989. Rare earth elements in sedimentary rocks: influence of provenance and sedimentary processes. In: Lipin BR & McKay GA (Editors) − Geochemistry and mineralogy of rare earth elements, v. 21. Walter de Gruyter, Berlin, p.169−200. DOI: https://doi.org/10.1515/9781501509032-010

McLennan SM, Taylor SR, McCulloch MT & Maynard JB 1990. Geochemical and Nd–Sr isotopic composition of deep–sea turbidites: crustal evolution and plate tectonic associations. Geochimica et Cosmochimica Acta 54: 2015−2050. https://doi.org/ 10.1016/0016–7037(90)90269–Q DOI: https://doi.org/10.1016/0016-7037(90)90269-Q

McMahon WJ, Davies NS, Liu AG & Went DJ 2022. Enigma variations: characteristics and likely origin of the problematic surface texture Arumberia, as recognized from an exceptional bedding plane exposure and the global record. Geological Magazine 159: 1−20. https://doi.org/10.1017/S0016756821000777 DOI: https://doi.org/10.1017/S0016756821000777

McMahon WJ, Liu AG, Tindal BH & Kleinhans MG 2020. Ediacaran life close to land: Coastal and shoreface habitats of the Ediacaran macrobiota, the Central Flinders Ranges, South Australia. Journal of Sedimentary Research 90: 1463−1499. https://doi.org/10.2110/jsr.2020.029 DOI: https://doi.org/10.2110/jsr.2020.029

Meng F, Ni P, Schiffbauer JD, Yuan X, Zhou C, Wang Y & Xia M 2011. Ediacaran seawater temperature: evidence from inclusions of Sinian halite. Precambrian Research 184: 63−69. https://doi.org/10.1016/j.precamres.2010.10.004 DOI: https://doi.org/10.1016/j.precamres.2010.10.004

Meyer M, Xiao S, Gill BC, Schiffbauer JD, Zhe C, Zhou C & Yuan X 2014. Interactions between Ediacaran animals and microbial mats: Insights from Lamonte trevallis, a new trace fossil from the Dengying Formation of South China. Palaeogeography Palaeoclimatology Palaeoecology 396: 62−74. https://doi.org/10.1016/j.palaeo.2013.12.026 DOI: https://doi.org/10.1016/j.palaeo.2013.12.026

Michard A & Alberede F 1986. The REE content of some hydrothermal fluids. Chemical Geology 55: 51−60. https://doi.org/10.1016/10.1016/0009–2541(86)90127–0 DOI: https://doi.org/10.1016/0009-2541(86)90127-0

Minařı́k L, Žigová A, Bendl J, Skřivan P & Štástnýd M 1998. The behaviour of rare–earth elements and Y during the rock weathering and soil formation in the Řı́čany granite massif, Central Bohemia. Science of the Total Environment 215: 101−111. https://doi.org/10.1016/S0048–9697(98)00113–2 DOI: https://doi.org/10.1016/S0048-9697(98)00113-2

Miranda LS, Collins AG & Marques AC 2015. Is Haootia quadriformis related to extant Staurozoa (Cnidaria)? Evidence from the muscular system reconsidered. Proceedings of the Royal Society B282: 20142396. https://doi.org/10.1098/rspb.2014.2396 DOI: https://doi.org/10.1098/rspb.2014.2396

Mitchell EG, Kenchington CG, Liu AG, Matthews JJ & Butterfield NJ 2015. Reconstructing the reproductive mode of an Ediacaran macro–organism. Nature 524: 343−346. https://doi.org/10.1038/nature14646 DOI: https://doi.org/10.1038/nature14646

Mitchell EG, Harris S, Kenchington CG, Vixseboxse P, Roberts L, Clark C, Dennis A, Liu AG & Wilby PR 2019. The importance of neutral over niche processes in structuring Ediacaran early animal communities. Ecology Letters 22: 2028−2038. https://doi.org/10.1111/ele.13383 DOI: https://doi.org/10.1111/ele.13383

Muhlbauer JG, Fedo CM & Moersch JE 2020. Architecture of a distal pre–vegetation braidplain: Cambrian middle member of the Wood Canyon Formation, southern Marble Mountains, California, USA. Sedimentology 67: 1084−1113. https://doi.org/10.1111/sed.12677 DOI: https://doi.org/10.1111/sed.12677

Munemoto T, Solongo T, Okuyama A, Fukushi K, Yunden A, Batbold T, Altansukh O, Takahashi Y, Iwai H & Nagao S 2020. Rare earth element distributions in rivers and sediments from the Erdenet Cu–Mo mining area, Mongolia. Applied Geochemistry 123: 104800. https://doi.org/10.1016/j.apgeochem.2020.104800 DOI: https://doi.org/10.1016/j.apgeochem.2020.104800

Narbonne GM, Laflamme M, Trusler PW, Dalrymple RW & Greentree C 2014. Deep–water Ediacaran fossils from Northwestern Canada: taphonomy, ecology, and evolution. Journal of Paleontology 88: 207−223. https://doi.org/10.1666/13–053 DOI: https://doi.org/10.1666/13-053

O’Brien SJ, O’Brien BH, Dunning GR & Tucker RD 1996. Late Neoproterozoic Avalonian and related peri–Gondwanan rocks of the Newfoundland Appalachians. In: Nance RD & Thompson MD (Editors) − Avalonian and Related Peri–Gondwanan Terranes of the Circum–North Atlantic. Geological Society of America Special Paper 304: 9–28. https://doi.org/10.1130/0–8137–2304–3.9 DOI: https://doi.org/10.1130/0-8137-2304-3.9

Paterson JR & Brock GA 2007. Early Cambrian trilobites from Angorichina, Flinders Ranges, South Australia, with a new assemblage from the Pararaia bunyerooensis Zone. Journal of Paleontology 81: 116−142. https://doi.org/10.1666/0022–3360(2007)81[116: ECTFAF]2.0.CO2 DOI: https://doi.org/10.1666/0022-3360(2007)81[116:ECTFAF]2.0.CO;2

Pérez–Ortega S, Fernández–Mendoza F, Raggio J, Vivas M, Ascaso C, Sancho LG, Printzen C & de Los Ríos A 2012. Extreme phenotypic variation in Cetraria aculeata (lichenized Ascomycota): adaptation or incidental modification? Annals of Botany 109: 1133–1148. https://doi.org/10.1093/aob/mcs042 DOI: https://doi.org/10.1093/aob/mcs042

Peters R, Jaffe B & Gelfenbaum G 2007. Distribution and sedimentary characteristics of tsunami deposits along Cascadia margin of North America. Sedimentary Geology 200: 372–386. https://doi.org/10.1016/j.sedgeo.2007.01.01 DOI: https://doi.org/10.1016/j.sedgeo.2007.01.015

Retallack GJ 2010. First evidence for locomotion in the Ediacara biota from the 565 Ma Mistaken Point Formation, Newfoundland: Comment. Geology 38: e223−e223. https://doi.org/10.1130/G31137C.1 DOI: https://doi.org/10.1130/G31137C.1

Retallack GJ 2011. Neoproterozoic loess and limits to Snowball Earth. Journal of the Geological Society of London 168: 289−308. https://doi.org/10.1144/0016–76492010–051 DOI: https://doi.org/10.1144/0016-76492010-051

Retallack GJ 2013. Ediacaran life on land. Nature 493: 89−92. https://doi.org/10.1038/nature11777 DOI: https://doi.org/10.1038/nature11777

Retallack GJ 2014. Volcanosedimentary paleoenvironments of Ediacaran fossils in Newfoundland. Geological Society of America Bulletin 126: 619−638. https://doi.org/10.1130/B30892.1 DOI: https://doi.org/10.1130/B30892.1

Retallack GJ 2016. Ediacaran sedimentology and paleoecology of Newfoundland reconsidered. Sedimentary Geology 333: 15−31. https://doi.org/ 10.1016/j.sedgeo.2015.12.001 DOI: https://doi.org/10.1016/j.sedgeo.2015.12.001

Retallack GJ 2017. Exceptional preservation of soft–bodied Ediacara Biota promoted by silica–rich oceans: comment. Geology 45: e407. https://doi.org/10.1130/G38763C.1 DOI: https://doi.org/10.1130/G38763C.1

Retallack GJ 2018. Reassessment of the Devonian problematicum Protonympha as another post–Ediacaran Vendobiont. Lethaia 51: 406−423. https://doi.org/10.1111/let.1225 DOI: https://doi.org/10.1111/let.12253

Retallack GJ 2019a. Interflag sandstone laminae, a novel sedimentary structure, with implications for Ediacaran paleoenvironments. Sedimentary Geology 379: 60−76. https://doi.org/10.1016/j.sedgeo.2018.11.003 DOI: https://doi.org/10.1016/j.sedgeo.2018.11.003

Retallack GJ 2019b. Ordovician land plants and fungi from Douglas Dam, Tennessee. The Palaeobotanist 68: 173−205. https://doi.org/10.54991/jop.2019.43 DOI: https://doi.org/10.54991/jop.2019.43

Retallack GJ 2020. Boron paleosalinity proxy for deeply buried Paleozoic and Ediacaran fossils. Palaeogeography Palaeoclimatology Palaeoecology 540: 109536. https://doi.org/10.1016/j.palaeo.2019.109536 DOI: https://doi.org/10.1016/j.palaeo.2019.109536

Retallack GJ 2021a. Towards a glacial subdivision of the Ediacaran Period, with example of the Boston Bay Group, Massachusetts. Australian Journal of Earth Sciences 69: 223−250. https://doi.org/10.1080/08120099.2021.1954088 DOI: https://doi.org/10.1080/08120099.2021.1954088

Retallack GJ 2021b. Paleosols and weathering leading up to Snowball Earth in central Australia. Australian Journal of Earth Sciences 68: 1122−1148. https://doi.org/10.1080/08120099.2021.1906747 DOI: https://doi.org/10.1080/08120099.2021.1906747

Retallack GJ 2022a. Biotic enhancement of weathering over the past 3.7 billion years. GSA Today 32: 4−9. https://doi.org/10.1130/GSATG543A.1 DOI: https://doi.org/10.1130/GSATG543A.1

Retallack GJ 2022b. Reconsideration of the Ediacaran problematicum Aulozoon. Journal of Palaeosciences 71: 143−157. https://doi.org/10.54991/jop.2022.1284. DOI: https://doi.org/10.54991/jop.2022.1284

Retallack GJ 2023. Why was there a Neoproterozoic Snowball Earth? Precambrian Research 385: 106952. https://doi.org/10.1016/j.precamres.2022.106952 DOI: https://doi.org/10.1016/j.precamres.2022.106952

Retallack GJ & Broz AP 2020. Ediacaran and Cambrian paleosols from central Australia. Palaeogeography Palaeoclimatology Palaeoecology 560: 110047. DOI: https://doi.org/10.1016/j.palaeo.2020.110047

Retallack GJ & Broz AP 2021. Arumberia and other Ediacaran–Cambrian fossils of central Australia. Historical Biology 33: 1964−1988. https://doi.org/10.1080/08912963.2020.1755281 DOI: https://doi.org/10.1080/08912963.2020.1755281

Retallack GJ, Broz AP, Lai LSH & Gardner K 2021. Neoproterozoic marine chemostratigraphy, or eustatic sea level change? Palaeogeography Palaeoclimatology Palaeoecology 562: 110155. https://doi.org/10.1016/j.palaeo.2020.110155 DOI: https://doi.org/10.1016/j.palaeo.2020.110155

Retallack GJ, Marconato A, Osterhout JT, Watts KE & Bindeman IN 2014. Revised Wonoka isotopic anomaly in South Australia and Late Ediacaran mass extinction. Journal of the Geological Society of London 171: 709−722. https://doi.org/10.1144/jgs2014–016 DOI: https://doi.org/10.1144/jgs2014-016

Révillon S, Jouet G, Bayon G, Rabineau M, Dennielou B, Hémond C & Berné S 2011. The provenance of sediments in the Gulf of Lions, western Mediterranean Sea. Geochemistry Geophysics Geosystems 12: GC003523. https://doi.org/10.1029/2011GC003523 DOI: https://doi.org/10.1029/2011GC003523

Rongemaille E, Bayon G, Pierre C, Bollinger C, Chu NC, Fouquet Y, Riboulot V & Voisset M 2011. Rare earth elements in cold seep carbonates from the Niger Delta. Chemical Geology 286: 196−206. https://doi.org/10.1016/j.chemgeo.2011.05.001 DOI: https://doi.org/10.1016/j.chemgeo.2011.05.001

Ronov AB, Balashov YA & Migdisov AA 1967. Geochemistry of the rare earths in the sedimentary cycle. Geochemistry International 4: 1−17.

Roy PD & Smykatz–Kloss W 2007. REE geochemistry of the recent playa sediments from the Thar Desert, India: an implication to playa sediment provenance. Geochemistry 67: 55−68. https://doi.org/10.1016/j.chemer.2005.01.006 DOI: https://doi.org/10.1016/j.chemer.2005.01.006

Runnegar B 2022. Following the logic behind biological interpretations of the Ediacaran biotas. Geological Magazine 159: 1093−1117. https://doi.org/10.1017/S0016756821000443 DOI: https://doi.org/10.1017/S0016756821000443

Sanematsu K, Murakami H, Watanabe Y, Duangsurigna S & Siphandone V 2009. Enrichment of rare earth elements (REE) in granitic rocks and their weathered crusts in central and southern Laos. Bulletin of the Geological Survey of Japan 60: 527−558. https://doi.org/10.9795/bullgsj.60.527 DOI: https://doi.org/10.9795/bullgsj.60.527

Seilacher A 1992. Vendobionta and Psammocorallia: lost constructions of Precambrian evolution. Journal of the Geological Society of London 149: 607−613. https://doi.org/10.1144/gsjgs.149.4.0607 DOI: https://doi.org/10.1144/gsjgs.149.4.0607

Seilacher A, Grazhdankin D & Legouta A 2003. Ediacaran biota: the dawn of animal life in the shadow of giant protists. Paleontological Research 7(1): 43−54. https://doi.org/10.2517/prpsj.7.43 DOI: https://doi.org/10.2517/prpsj.7.43

Selly T, Schiffbauer JD, Jacquet SM, Smith EF, Nelson LL, Andreasen BD, Huntley JW, Strange MA, O’Neil GR, Thater CA & Bykova N 2020. A new cloudinid fossil assemblage from the terminal Ediacaran of Nevada, USA. Journal of Systematic Palaeontology 18: 357−379. https://doi.org/10.1080/14772019.2019.1623333 DOI: https://doi.org/10.1080/14772019.2019.1623333

Sholkovitz ER, Landing WM & Lewis BL 1994. Ocean particle chemistry: the fractionation of rare earth elements between suspended particles and seawater. Geochimica et Cosmochimica Acta 58: 1567–1579. https://doi.org/10.1016/0016–7037(94)90559–2 DOI: https://doi.org/10.1016/0016-7037(94)90559-2

Singh TD & Manikyamba C 2020. Platinum group element geochemistry and whole–rock systematics of the Vempalle sills, Cuddapah Basin, India: Implications on sulphur saturation history, mantle processes, and tectonic setting. Geological Journal 55: 1300−1319. https://doi.org/10.1002/gj.3459 DOI: https://doi.org/10.1002/gj.3459

Smith EF, Nelson LL, Strange MA, Eyster AE, Rowland SM, Schrag DP & Macdonald FA 2016. The end of the Ediacaran: Two new exceptionally preserved body fossil assemblages from Mount Dunfee, Nevada, USA. Geology 44: 911−914. https://doi.org/10.1130/G38157. DOI: https://doi.org/10.1130/G38157.1

Smith EF, Nelson LL, Tweedt SM, Zeng H & Workman JB 2017. A cosmopolitan late Ediacaran biotic assemblage: new fossils from Nevada and Namibia support a global biostratigraphic link. Proceedings of the Royal Society of London B284: 20170934. https://doi.org/10.1098/rspb.2017.0934 DOI: https://doi.org/10.1098/rspb.2017.0934

Strother PK & Foster C 2021. A fossil record of land plant origins from charophyte algae. Science 373: 792−796. https://doi.org/10.1126/science.abj2 DOI: https://doi.org/10.1126/science.abj2927

Sugahara H, Sugitani K, Mimura K, Yamashita F & Yamamoto K 2010. A systematic rare–earth elements and yttrium study of Archean cherts at the Mount Goldsworthy greenstone belt in the Pilbara Craton: Implications for the origin of microfossil–bearing black cherts. Precambrian Research 177: 73−87. https://doi.org/10.1016/j.precamres.2009.10.005 DOI: https://doi.org/10.1016/j.precamres.2009.10.005

Szczuciński W, Kokociński M, Rzeszewski M, Chagué–Goff C, Cachão M, Goto K & Sugawara D 2012. Sediment sources and sedimentation processes of 2011 Tohoku–oki tsunami deposits on Sendai Plain, Japan—insights from diatoms, nannoliths and grain size distribution. Sedimentary Geology 282: 40–56. https://doi.org/10.1016/j.sedgeo.2012.07.019 DOI: https://doi.org/10.1016/j.sedgeo.2012.07.019

Tahata M, Ueno Y, Ishikawa T, Sawaki Y, Murakami K, Han J, Shu D, Li Y, Guo J, Yoshida N & Komiya T 2013. Carbon and oxygen chemostratigraphy of the Yangtze platform, South China: decoding temperature and environmental changes through the Ediacaran. Gondwana Research 23: 333−353. https://doi.org/10.1016/j.gr.2012.04.005 DOI: https://doi.org/10.1016/j.gr.2012.04.005

Tarhan LG, Droser ML, Gehling JG & Dzaugis MP 2017. Microbial mat sandwiches and other anactualistic sedimentary features of the Ediacara Member (Rawnsley Quartzite, South Australia): implications for interpretation of the Ediacaran sedimentary record. Palaios 32: 181−194. https://doi.org/10.2110/palo.2016.060 DOI: https://doi.org/10.2110/palo.2016.060

Taylor SR & McLennan SM 1985. The Continental Crust: its Composition and Evolution. Blackwell, Oxford, 312 p.

Tostevin R, Shields GA, Tarbuck GM, He T, Clarkson MO & Wood RA 2016a. Effective use of cerium anomalies as a redox proxy in carbonate–dominated marine settings. Chemical Geology 438: 146−162. https://doi.org/10.1016/j.chemgeo.2016.06.027 DOI: https://doi.org/10.1016/j.chemgeo.2016.06.027

Tostevin R, Wood RA, Shields GA, Poulton SW, Guilbaud R, Bowyer F, Penny AM, He T, Curtis A, Hoffmann KH & Clarkson MO 2016b. Low–oxygen waters limited habitable space for early animals. Nature Communications 7: 12818. https://doi.org/10.1038/ncomms12818 DOI: https://doi.org/10.1038/ncomms12818

Vickers–Rich P, Ivantsov AY, Trusler PW, Narbonne GM, Hall M, Wilson SA, Greentree C, Fedonkin MA, Elliott DA, Hoffmann KH & Schneider GI 2013. Reconstructing Rangea: new discoveries from the Ediacaran of southern Namibia. Journal of Paleontology 87: 1−15. https://doi.org/10.1666/12–074R. DOI: https://doi.org/10.1666/12-074R.1

Wade M 1969. Medusae from uppermost Precambrian or Cambrian sandstones, central Australia. Palaeontology 12: 351−365.

Wang CS, Hu XM, Huang YJ, Scott RW & Wagreich M 2009. Overview of Cretaceous Oceanic Red Beds (CORBs): a window on global oceanic and climate change. In: Hu X, Wang C, Scott RW, Wagreich M & Jansa L (Editors) − Cretaceous Oceanic Red Beds: Stratigraphy, Composition, Origins and Paleoceanographic and Paleoclimatic Significance. Society of Economic Paleontologists and Mineralosts Special Publication 91: 13−33. https://doi.org/10.2110/sepmsp.091.013 DOI: https://doi.org/10.2110/sepmsp.091.013

Wang XP, Chen Z, Pang K, Zhou CM, Xiao S, Wan B & Yuan XL 2021. Dickinsonia from the Ediacaran Dengying Formation in the Yangtze Gorges area, South China. Palaeoworld 30: 602−609. https://doi.org/10.1016/j.palwor.2021.01.002 DOI: https://doi.org/10.1016/j.palwor.2021.01.002

Wang Z, Wang J, Suess E, Wang G, Chen C & Xiao S 2017. Silicified glendonites in the Ediacaran Doushantou Formation (South China) and their potential paleoclimatic implications. Geology 45: 115–118. https://doi.org/10.1130/G38613.1 DOI: https://doi.org/10.1130/G38613.1

Wei W & Algeo TJ 2020. Elemental proxies for paleosalinity analysis of ancient shales and mudrocks. Geochimica et Cosmochimica Acta 287: 341−366. https://doi.org/ 10.1016/j.gca.2019.06.034 DOI: https://doi.org/10.1016/j.gca.2019.06.034

Wood DA, Dalrymple RW, Narbonne GM, Gehling JG & Clapham ME 2003. Paleoenvironmental analysis of the late Neoproterozoic Mistaken Point and Trepassey Formations, southeastern Newfoundland. Canadian Journal of Earth Sciences 40: 1375–1391. https://doi.org/10.1139/e03–048 DOI: https://doi.org/10.1139/e03-048

Wood R, Liu AG, Bowyer F, Wilby PR, Dunn FS, Kenchington CG, Cuthill JFH, Mitchell EG & Penny A 2019. Integrated records of environmental change and evolution challenge the Cambrian Explosion. Nature Ecology and Evolution 3: 528−538. https://doi.org/10.1038/s41559–019–0821–6 DOI: https://doi.org/10.1038/s41559-019-0821-6

Wu HP, Jiang SY, Palmer MR, Wei HZ & Yang JH 2019. Positive cerium anomaly in the Doushantuo cap carbonates from the Yangtze platform, South China: implications for intermediate water column manganous conditions in the aftermath of the Marinoan glaciation. Precambrian Research 320: 93−110. https://doi.org/ 10.1016/j.precamres.2018.10.019 DOI: https://doi.org/10.1016/j.precamres.2018.10.019

Xiao S & Narbonne GM 2020. The Ediacaran Period. In: Gradstein FM, Ogg JG, Schmitz MD & Ogg GD (Editors) − Geologic Time Scale 2020. Elsevier, Amsterdam, p. 521−561. DOI: https://doi.org/10.1016/B978-0-12-824360-2.00018-8

Yang SY, Lim DI, Jung HS & Oh BC 2004. Geochemical composition and provenance discrimination of coastal sediments around Cheju Island in the southeastern Yellow Sea. Marine Geology 206: 41−53. https://doi.org/10.1016/j.margeo.2004.01.005 DOI: https://doi.org/10.1016/j.margeo.2004.01.005

Yasukawa K, Nakamura K, Fujinaga K, Machida S, Ohta J, Takaya Y & Kato Y 2015. Rare–earth, major, and trace element geochemistry of deep–sea sediments in the Indian Ocean: Implications for the potential distribution of REY–rich mud in the Indian Ocean. Geochemical Journal 49: 621−635. https://doi.org/10.2343/geochemj.2.0361 DOI: https://doi.org/10.2343/geochemj.2.0361

Zhang K, Zhu XK & Yan B 2015. A refined dissolution method for rare earth element studies of bulk carbonate rocks. Chemical Geology 412: 82−91. https://doi.org/10.1016/j.chemgeo.2015.07.027 DOI: https://doi.org/10.1016/j.chemgeo.2015.07.027

Zhang L, Chang S, Khan MZ, Feng Q, Luo C, Steiner M, Forel M–B, Liu K & Clausen S 2020. Influence of palaeo–redox and diagenetic conditions on the spatial distribution of Cambrian biotas: A case study from the upper Shuijingtuo Formation (Cambrian Series 2, Stage 3), Three Gorges area of South China. Palaeogeography Palaeoclimatology Palaeoecology 548: 109696. https://doi.org/10.1016/j.palaeo.2020.109696 DOI: https://doi.org/10.1016/j.palaeo.2020.109696

Zhuravlev AY, Wood RA & Penny AM 2015. Ediacaran skeletal metazoan interpreted as a lophophorate. Proceedings of the Royal Society London B282: 20151860. https://doi.org/10.1098/rspb.2015.1860 DOI: https://doi.org/10.1098/rspb.2015.1860

Downloads

Published

2024-06-30

How to Cite

Retallack, G. (2024). Rare earth element proxy for distinguishing marine versus freshwater Ediacaran fossils. Journal of Palaeosciences, 73(1), 67–91. https://doi.org/10.54991/jop.2024.1874

Issue

Section

Research Articles