Internal structure of Cambrian vendobionts Arumberia, Hallidaya, and Noffkarkys preserved by clay in Montana, USA

Authors

  • Gregory J. Retallack Department of Geological Sciences, University of Oregon, Eugene, Oregon 97403, U.S.A.

DOI:

https://doi.org/10.54991/jop.2022.539

Keywords:

Cambrian, Arumberia, Noffkarkys, Hallidaya, Vendobiont

Abstract

Quilted fossils known as vendobionts have remained enigmatic because preserved as unrevealing impressions in sandstone, for example, Arumberia banksi Glaessner & Walter, Noffkarkys storaasli Retallack & Broz, and Hallidaya brueri (Wade) Retallack & Broz from the Ediacaran to Cambrian, Grant Bluff and Arumbera formations of central Australia. These same species are reported here in shaley facies of the Early Cambrian Flathead Sandstone of Fishtrap Lake, Montana. These fossils preserved in three dimensions are infiltrated by clay and confirm that each taxon has distinctive internal chambers reflecting segmentation seen on the surface. Sedimentary structures, petrography and geochemistry of the Montana sediments are evidence that Arumberia, Noffkarkys and Hallidaya lived on supratidal flats of a wave-protected rock-bound estuary unaffected by marine bioturbation, and represent intertidal to supratidal ecosystems widespread from the Ediacaran to Cambrian.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Antcliffe JB & Brasier MD 2007. Charnia and sea pens are poles apart. Geological Society of London Journal 164: 49–51. DOI: https://doi.org/10.1144/0016-76492006-080

Antcliffe JB & Brasier MD 2008. Charnia at 50: developmental models for Ediacaran fronds. Palaeontology 51: 11–26. DOI: https://doi.org/10.1111/j.1475-4983.2007.00738.x

Becker YR 1980. A new locality of Ediacara-type fauna in the Urals. Doklady Akademia Nauk SSSR 254: 480–482 (in Russian).

Becker YR 1985. Vendian metazoa from the Urals. In: Sokolov BS & Iwanowski AB (Editors)—The Vendian System: Vol. 1 Paleontology, Springer, Berlin: 121–131.

Belnap J 2003. Comparative structure of physical and biological soil crusts. In: Belnap J & Lange OL (Editors)—Biological soil crusts: structure, function and management, Springer, Berlin: 177–191. DOI: https://doi.org/10.1007/978-3-642-56475-8_15

Ben-Jacob E, Schachnet O, Tenenbaum A, Cohen I, Czirok A & Vicsek T 1994. Generic modelling of cooperative growth patterns in bacterial colonies. Nature 368: 46–49. DOI: https://doi.org/10.1038/368046a0

Bippus AC, Stockey RA, Rothwell GW & Tomescu AMF 2017. Extending the fossil record of Polytrichaceae: Early Cretaceous Meantoinea alophosioides gen. et sp. nov., permineralized gametophytes with gemma cups from Vancouver Island. American Journal of Botany 104: 584–597. DOI: https://doi.org/10.3732/ajb.1700002

Bland BH 1984. Arumberia Glaessner & Walter, a review of its potential for correlation in the region of the Precambrian-Cambrian boundary. Geological Magazine 121: 625–633. DOI: https://doi.org/10.1017/S0016756800030776

Bold HC & Wynne MJ 2000. Introduction to the algae. Prentice-Hall, Englewood Cliffs.

Brasier MD, Antcliffe JB & Liu AG 2012. The architecture of Ediacaran fronds. Palaeontology 55: 1105–1124. DOI: https://doi.org/10.1111/j.1475-4983.2012.01164.x

Brodo IM, Sharnoff SD & Sharnoff S 2001. Lichens of North America. Yale University Press, New Haven. DOI: https://doi.org/10.29173/bluejay5827

Broz A, Retallack GJ, Maxwell TM & Silva LCR 2021. A record of vapour pressure deficit preserved in wood and soil across biomes. Nature Scientific Reports 11: 1−12. DOI: https://doi.org/10.1038/s41598-020-80006-9

Buatois LA 2018. Treptichnus pedum and the Ediacaran–Cambrian boundary: significance and caveats. Geological Magazine 155: 174–180. DOI: https://doi.org/10.1017/S0016756817000656

Buatois LA, Narbonne GM, Mángano MG, Carmona NB & Myrow P 2014. Ediacaran matground ecology persisted into the earliest Cambrian. Nature Communications 5: 1–5. DOI: https://doi.org/10.1038/ncomms4544

Buatois LA, Almond J, Mángano MG, Jensen S & Germs GJ 2018. Sediment disturbance by Ediacaran bulldozers and the roots of the Cambrian explosion. Scientific Reports 8(1): 1–9. DOI: https://doi.org/10.1038/s41598-018-22859-9

Budd GE & Jensen S 2017. The origin of the animals and a ‘Savannah’ hypothesis for early bilaterian evolution. Biological Reviews 92: 446–473. DOI: https://doi.org/10.1111/brv.12239

Bush JH 1989. The Cambrian System of northern Idaho and northwestern Montana. In: Chamberlain VE, Breckenridge RM & Bonnichsen B (Editors)—Guidebook to the Geology of Northern and Western Idaho and Surrounding Area. Idaho Bureau of Mines and Geology Bulletin 19: 103–121.

Bykova N, LoDuca ST, Ye Q, Marusin V, Grazhdankin D & Xiao S 2020. Seaweeds through time: Morphological and ecological analysis of Proterozoic and early Paleozoic benthic macroalgae. Precambrian Research: 105875. DOI: https://doi.org/10.1016/j.precamres.2020.105875

Darroch SA, Smith EF, Laflamme M & Erwin DH 2018a. Ediacaran extinction and Cambrian explosion. Trends in Ecology & Evolution 33: 653–663. DOI: https://doi.org/10.1016/j.tree.2018.06.003

Darroch SA, LaFlamme M & Wagner PJ 2018b. High ecological complexity in benthic Ediacaran communities. Nature Ecology and Evolution 2(10): 1541−1547. DOI: https://doi.org/10.1038/s41559-018-0663-7

Del Cortona A, Jackson CJ, Bucchini F, Van Bel M, D’Hondt S, Škaloud P, Delwiche CF, Knoll AH, Raven JA, Verbruggen H & Vandepoele K 2020. Neoproterozoic origin and multiple transitions to macroscopic growth in green seaweeds. Proceedings of the National Academy of Sciences 117: 2551–2559. DOI: https://doi.org/10.1073/pnas.1910060117

Dietrich M & Scheidegger C 1997. Frequency, diversity and ecological strategies of epiphytic lichens in the Swiss Central Plateau and the Pre-Alps. The Lichenologist 29: 237−258 DOI: https://doi.org/10.1006/lich.1996.0074

Dzik J 2005. Behavioral and anatomical unity of the earliest burrowing animals and the cause of the “Cambrian explosion”. Paleobiology 31: 503–521. DOI: https://doi.org/10.1666/0094-8373(2005)031[0503:BAAUOT]2.0.CO;2

Eldridge DJ & Greene RSB 1994. Microbiotic soil crusts: a review of their roles in soils and ecological processes in the rangelands of Australia. Australian Journal of Soil Research 32: 389–415. DOI: https://doi.org/10.1071/SR9940389

Fedonkin MA, Gehling JG, Grey K, Narbonne GM & Vickers-Rich P (Editors) 2008. The rise of animals: evolution and diversification of the Kingdom Animalia. Johns Hopkins University Press, Baltimore.

Fernandez-Going BM, Harrison SP, Anacker BL & Safford HD 2013. Climate interacts with soil to produce beta diversity in Californian plant communities. Ecology 94: 2007−2018. DOI: https://doi.org/10.1890/12-2011.1

Finnegan S, Gehling JG, & Droser ML 2019. Unusually variable paleocommunity composition in the oldest metazoan fossil assemblages. Paleobiology 45: 235−245. DOI: https://doi.org/10.1017/pab.2019.1

Flude LI & Narbonne GM 2008. Taphonomy and ontogeny of a multibranched Ediacaran fossil: Bradgatia from the Avalon Peninsula of Newfoundland. Canadian Journal of Earth Sciences 45: 1095–1109. DOI: https://doi.org/10.1139/E08-057

Ford TD 1958. Precambrian fossils of Charnwood Forest. Yorkshire Geological Society Proceedings 31: 211–217. DOI: https://doi.org/10.1144/pygs.31.3.211

Gehling JG & Droser ML 2018. Ediacaran scavenging as a prelude to predation. Emerging Topics in Life Sciences 2: 213–222. DOI: https://doi.org/10.1042/ETLS20170166

Gehling JG & Narbonne GM 2007. Spindle-shaped Ediacara fossils from the Mistaken Point assemblage, Avalon Zone, Newfoundland. Canadian Journal of Earth Sciences 44: 367–387. DOI: https://doi.org/10.1139/e07-003

Gehling JG, Narbonne GM & Anderson MM 2000. The first named Ediacaran body fossil Aspidella terranovica. Palaeontology 43: 427–456. DOI: https://doi.org/10.1111/j.0031-0239.2000.00134.x

Glaessner MF & Walter MR 1975. New Precambrian fossils from the Arumbera Sandstone, Northern Territory. Alcheringa 1: 59–69. DOI: https://doi.org/10.1080/03115517508619480

Gould RE & Delevoryas T 1977. The biology of Glossopteris: evidence from petrified seed-bearing and pollen-bearing organs. Alcheringa 1: 387–399. DOI: https://doi.org/10.1080/03115517708527774

Grazhdankin D & Gerdes H 2007. Ediacaran microbial colonies. Lethaia 30: 201–210. DOI: https://doi.org/10.1111/j.1502-3931.2007.00025.x

Grazhdankin D & Seilacher A 2002. Underground Vendobionta from Namibia. Palaeontology 45: 57–78. DOI: https://doi.org/10.1111/1475-4983.00227

Grazhdankin D, Balthasar U, Nagovitsin KE & Kochev BB 2008. Carbonate-hosted Avalon-type fossils in arctic Siberia. Geology 36: 803–806. DOI: https://doi.org/10.1130/G24946A.1

Hofmann HJ, O'Brien SJ & King AF 2008. Ediacaran biota on Bonavista Peninsula, Newfoundland, Canada. Journal of Paleontology 82: 1–36. DOI: https://doi.org/10.1666/06-087.1

Hoyal Cuthill JF, & Han J 2018. Cambrian petalonamid Stromatoveris phylogenetically links Ediacaran biota to later animals. Palaeontology 61: 813−823. DOI: https://doi.org/10.1111/pala.12393

Ivantsov AY, Narbonne GM, Trusler PW, Greentree C & Vickers‐Rich P 2015. Elucidating Ernietta: new insights from exceptional specimens in the Ediacaran of Namibia. Lethaia 49: 540–554. DOI: https://doi.org/10.1111/let.12164

Jenkins RJF 1992. Functional and ecological aspects of Ediacaran assemblages. In: Lipps JH & Signor PW (Editors)—Origin and early evolution of the Metazoa, Plenum Press, New York: 131–176. DOI: https://doi.org/10.1007/978-1-4899-2427-8_5

Jenkins RJF, Plummer PS & Moriarty KC 1981. Late Precambrian pseudofossils from the Flinders Ranges, South Australia. Royal Society of South Australia Transactions 105: 67–83.

Jennings JR 1974. Lower Pennsylvanian plants of Illinois. I: A flora from the Pounds Sandstone Member of the Caseyville Formation. Journal of Paleontology 48: 459–473.

Jennings JR 1985. Fossil plants from the Mauch Chunk Formation of Pennsylvania: morphology of Adiantites antiquus. Journal of Paleontology 59: 1146–1157.

Keim JW & Rector RJ 1964. Paleozoic rocks in northwestern Montana - a newly recognized occurrence. Geological Society of America Bulletin 75: 575–578. DOI: https://doi.org/10.1130/0016-7606(1964)75[575:PRINMA]2.0.CO;2

Kessler M, Abrahamczyk S, Bos M, Buchori D, Putra DD, Gradstein SR, Höhn P, Kluge J, Orend F, Pitopang R & Saleh S 2009. Alpha and beta diversity of plants and animals along a tropical land‐use gradient. Ecological Applications 19: 2142−2156. DOI: https://doi.org/10.1890/08-1074.1

Kolesnikov AV, Grazhdankin DV & Maslov AV 2012. Arumberia-type structures in the Upper Vendian of the Urals. Doklady Earth Sciences 447: 1233–1239. DOI: https://doi.org/10.1134/S1028334X12110013

Kumar S & Ahmad S 2012. Restudy of an Ediacaran medusoid Marsonia artiyansis Raghav et al., 2005, from the Jodhpur Sandstone, Jodhpur district, western Rajasthan. Journal of the Paleontological Society of India 57: 135–142.

Kumar S & Pandey SK 2008. Arumberia and associated fossils from the Neoproterozoic Maihar Sandstone, Vindhyan Supergroup, central India. Journal of the Palaeontological Society of India 53: 83–97.

Kuusinen M 1994. Epiphytic lichen diversity on Salix caprea in old-growth southern and middle boreal forests of Finland. Annales Botanici Fennici 31: 77–92.

Laing BA, Mángano MG, Buatois LA, Narbonne GM & Gougeon RC 2019. A protracted Ediacaran–Cambrian transition: an ichnologic ecospace analysis of the Fortunian in Newfoundland, Canada. Geological Magazine 156: 1623–1630. DOI: https://doi.org/10.1017/S0016756819000141

Liivamägi S, Somelar P, Mahaney WC, Kirs J, Vircava I & Kirsimäe K 2014. Late Neoproterozoic Baltic paleosol: Intense weathering at high latitude? Geology 42: 323–326. DOI: https://doi.org/10.1130/G35209.1

Lin J-P, Gon SP, Gehling JG, Babcock LE, Zhao Y-L, Hu S-X, Yuan JL, Yu M-Y & Peng J 2006. A Parvancorina-like arthropod from the Cambrian of South China. Historical Biology 18: 33–45. DOI: https://doi.org/10.1080/08912960500508689

Liu AG, Brasier MD, Bolgolepova OK, Raevskaya EG & Gubanov AP 2013. First report of a newly discovered Ediacaran biota from the Irkineeva Uplift, East Siberia. Newsletters in Stratigraphy 46: 95–110. DOI: https://doi.org/10.1127/0078-0421/2013/0031

Lund EH 1973. Oregon coastal dunes between Coos Bay and Sea Lion Point. Ore Bin 35: 73–92.

MacGabhann BA 2007. Discoidal fossils of the Ediacaran: a review of current understanding. In: Vickers-Rich P & Komarower P (Editors)—The rise and fall of the Ediacaran biota. Geological Society of London Special Publication 286: 297–313. DOI: https://doi.org/10.1144/SP286.21

Maples CG & Archer AW 1987. Redescription of Early Pennsylvanian trace-fossil holotypes from the nonmarine Hindostan Whetstone Beds of Indiana. Journal of Paleontology 61: 890–897. DOI: https://doi.org/10.1017/S0022336000029280

Mapstone NB & McIlroy D 2006. Ediacaran fossil preservation: taphonomy and diagenesis of a discoid biota from the Amadeus Basin, central Australia. Precambrian Research 149: 126−148. DOI: https://doi.org/10.1016/j.precamres.2006.05.007

Matten LC 1973. Preparation of pyritized plant petrifactions: “a plea for pyrite”. Review of Palaeobotany and Palynology 16: 165–173. DOI: https://doi.org/10.1016/0034-6667(73)90044-4

McIlroy D & Walter MR 1997. A reconsideration of the biogenicity of Arumberia banksi Glaessner & Walter. Alcheringa 21: 79–80. DOI: https://doi.org/10.1080/03115519708619187

McIlroy D, Crimes TP & Pauley JC 2005. Fossils and matgrounds from the Neoproterozoic Longmyndian Supergroup, Shropshire, UK. Geological Magazine 142: 441–445. DOI: https://doi.org/10.1017/S0016756805000555

McIlroy D, Dufour SC, Taylor R & Nicholls R 2021. The role of symbiosis in the first colonization of the seafloor by macrobiota: Insights from the oldest Ediacaran biota (Newfoundland, Canada). Biosystems 205: 104413. DOI: https://doi.org/10.1016/j.biosystems.2021.104413

McMahon WJ, Liu AG, Tindal BH & Kleinhans MG 2020. Ediacaran life close to land: Coastal and shoreface habitats of the Ediacaran macrobiota, the Central Flinders Ranges, South Australia. Journal of Sedimentary Research 90: 1463−1499. DOI: https://doi.org/10.2110/jsr.2020.029

McMahon WJ, Davies NS, Liu AG & Went DJ 2021. Enigma variations: characteristics and likely origin of the problematic surface texture Arumberia, as recognized from an exceptional bedding plane exposure and the global record. Geological Magazine 159: 1−20. DOI: https://doi.org/10.1017/S0016756821000777

McMenamin MA 2000. The garden of Ediacara: discovering the first complex life. Columbia University Press, New York.

Merino E 1984. Survey of geochemical self-patterning phenomena. In: Nichols G & Baras F (Editors)—Chemical instabilities. North Atlantic Treaty Organization Advances in Science Information Series C120: 305–328. DOI: https://doi.org/10.1007/978-94-009-7254-4_22

Mitchell EG & Butterfield NJ 2018. Spatial analyses of Ediacaran communities at Mistaken Point. Paleobiology 44: 40–57. DOI: https://doi.org/10.1017/pab.2017.35

Mitchell EG, Harris S, Kenchington CG, Vixseboxse P, Roberts L, Clark C, Dennis A, Liu AG & Wilby PR 2019. The importance of neutral over niche processes in structuring Ediacaran early animal communities. Ecology Letters 22: 2028–2038. DOI: https://doi.org/10.1111/ele.13383

Mitchell EG, Bobkov N, Bykova N, Dhungana A, Kolesnikov AV, Hogarth IR, Liu AG, Mustill TM, Sozonov N, Rogov VI & Xiao S 2020. The influence of environmental setting on the community ecology of Ediacaran organisms. Interface Focus 10: 20190109. DOI: https://doi.org/10.1098/rsfs.2019.0109

Naimark EB & Ivantsov AY 2009. Growth variability in the Late Vendian problematic Parvancorina Glaessner. Paleontological Journal 43: 12–18. DOI: https://doi.org/10.1134/S003103010901002X

Narbonne GM, LaFlamme M, Greentree C & Trusler P 2009. Reconstructing a lost world; Ediacaran rangeomorphs from Spaniard's Bay, Newfoundland. Journal of Paleontology 83: 503–523. DOI: https://doi.org/10.1666/08-072R1.1

Narbonne GM, Saylor BZ & Grotzinger JP 1997. The youngest Ediacaran fossils from southern Africa. Journal of Paleontology 71: 953−967. DOI: https://doi.org/10.1017/S0022336000035940

Oji T, Dornbos SQ, Yada K, Hasegawa H, Gonchigdorj S, Mochizuki T, Takayanagi H & Iryu Y 2018. Penetrative trace fossils from the late Ediacaran of Mongolia: early onset of the agronomic revolution. Royal Society Open Science 5: 172250. DOI: https://doi.org/10.1098/rsos.172250

Peterson KJ, Waggoner B & Hagadorn JW 2003. A fungal analog for Newfoundland Ediacaran fossils? Integrative and Comparative Biology 43: 127–136. DOI: https://doi.org/10.1093/icb/43.1.127

Pflug HD 1973. Zur fauna der Nama-Schichten in Südwest-Afrika. IV. Mikroskopische anatomie der Petalo-organismen. Palaeontographica A144: 166–202.

Pflug HD 1994. Role of size increase in Precambrian organismic evolution. Neues Jahrbuch für Geologie und Paläontologie Abhandlungen 193: 245–286.

Poinar GO 1992. Life in amber. Stanford University Press, Palo Alto. DOI: https://doi.org/10.1515/9781503623545

Razumovskiy AA, Ivantsov AY, Novikov IA & Korochantsev AV 2015. Kuckaraukia multituberculata: A new Vendian Fossil from the Basa Formation of the Asha Group in the South Urals. Paleontological Journal 49: 449–456. DOI: https://doi.org/10.1134/S0031030115050111

Reimer TO 1983. Accretionary lapilli in volcanic ash falls: physical factors governing their formation. In: Peryt TM (Editor)—Coated grains, Springer, Berlin: 56–68. DOI: https://doi.org/10.1007/978-3-642-68869-0_6

Retallack GJ 1992. What to call early plant formations on land. Palaios 7: 508–520. DOI: https://doi.org/10.2307/3514848

Retallack GJ 1994. Were the Ediacaran fossils lichens? Paleobiology 20: 523–544. DOI: https://doi.org/10.1017/S0094837300012975

Retallack GJ 1997. A colour guide to paleosols. Wiley, Chichester.

Retallack GJ 2007. Growth, decay and burial compaction of Dickinsonia, an iconic Ediacaran fossil. Alcheringa 31: 215–240. DOI: https://doi.org/10.1080/03115510701484705

Retallack GJ 2008. Cambrian paleosols and landscapes of South Australia. Australian Journal of Earth Sciences 55: 1083–1106. DOI: https://doi.org/10.1080/08120090802266568

Retallack GJ 2009. Cambrian-Ordovician non-marine fossils from South Australia. Alcheringa 33: 355–391. DOI: https://doi.org/10.1080/03115510903271066

Retallack GJ 2011. Problematic megafossils in Cambrian paleosols of South Australia. Palaeontology 54: 1223–1242. DOI: https://doi.org/10.1111/j.1475-4983.2011.01099.x

Retallack GJ 2012. Were Ediacaran siliciclastics of South Australia coastal or deep marine? Sedimentology 59: 1208–1236. DOI: https://doi.org/10.1111/j.1365-3091.2011.01302.x

Retallack GJ 2013a. Early Cambrian humid, tropical paleosols from Montana. In: Driese SG (Editor)—New frontiers in paleopedology and terrestrial paleoclimatology. Society of Economic Paleontologists and Mineralogists Special Paper 44: 257–272. DOI: https://doi.org/10.2110/sepmsp.104.09

Retallack GJ 2013b. Ediacaran life on land. Nature 493: 89–92. DOI: https://doi.org/10.1038/nature11777

Retallack GJ 2015a. Reassessment of the Silurian problematicum Rutgersella as another post-Ediacaran vendobiont. Alcheringa 39: 573–588. DOI: https://doi.org/10.1080/03115518.2015.1069483

Retallack GJ 2015b. Acritarch evidence of a late Precambrian adaptive radiation of Fungi. Botanica Pacifica 4: 19–33. DOI: https://doi.org/10.17581/bp.2015.04203

Retallack GJ 2016a. Ediacaran fossils in thin-section. Alcheringa 40: 583–600. DOI: https://doi.org/10.1080/03115518.2016.1159412

Retallack GJ 2016b. Ediacaran sedimentology and paleoecology of Newfoundland reconsidered. Sedimentary Geology 333: 15–31. DOI: https://doi.org/10.1016/j.sedgeo.2015.12.001

Retallack GJ 2016c. Field and laboratory tests for recognition of Ediacaran paleosols. Gondwana Research 36: 94–110. DOI: https://doi.org/10.1016/j.gr.2016.05.001

Retallack GJ 2017. Exceptional preservation of soft-bodied Ediacara Biota promoted by silica-rich oceans: comment. Geology 44: e. 407. DOI: https://doi.org/10.1130/G38763C.1

Retallack GJ 2018. Reassessment of the Devonian problematicum Protonympha as another post‐Ediacaran vendobiont. Lethaia 51(3): 406−423. DOI: https://doi.org/10.1111/let.12253

Retallack GJ 2019. Interflag sandstone laminae, a novel fluvial sedimentary structure with implication for Ediacaran paleoenvironments. Sedimentary Geology 379: 60–76. DOI: https://doi.org/10.1016/j.sedgeo.2018.11.003

Retallack GJ 2020. Boron paleosalinity proxy for deeply buried Paleozoic and Ediacaran fossils. Palaeogeography, Palaeoclimatology, Palaeoecology, 540:109536. DOI: https://doi.org/10.1016/j.palaeo.2019.109536

Retallack GJ & Broz AP 2020. Arumberia and other Ediacaran–Cambrian fossils of central Australia. Historical Biology 33: 1964−1988. DOI: https://doi.org/10.1080/08912963.2020.1755281

Retallack GJ, Sheldon ND, Cogoini M & Elmore RD 2003. Magnetic susceptibility of early Paleozoic and Precambrian paleosols. Palaeogeography Palaeoclimatology Palaeoecology 198: 373–380. DOI: https://doi.org/10.1016/S0031-0182(03)00479-6

Rindsberg AK & Kopaska-Merkel DC 2005. Treptichnus and Arenicolites from the Steven C. Minkin Paleozoic footprint site (Langsettian, Alabama, USA). Pennsylvanian Footprints in the Black Warrior Basin of Alabama 1: 121–141.

Savazzi E 2007. A new reconstruction of Protolyellia (Early Cambrian psammocoral). In: Vickers-Rich P & Komarower P (Editors)-The rise and fall of the Ediacaran biota. Geological Society of London Special Publication 286: 339–353. DOI: https://doi.org/10.1144/SP286.24

Schaeffer B 1984. On the relationships of the Triassic-Liassic redfieldiiform fishes. American Museum Novitates 2795: 1–18.

Schiffbauer JD, Huntley JW, O’Neil GR, Darroch SA, Laflamme M & Cai Y 2016. The latest Ediacaran Wormworld fauna: setting the ecological stage for the Cambrian Explosion. GSA Today 26: 4–11. DOI: https://doi.org/10.1130/GSATG265A.1

Seilacher A 1992. Vendobionta and Psammocorallia: lost constructions of Precambrian evolution. Geological Society of London Journal 149: 607–613. DOI: https://doi.org/10.1144/gsjgs.149.4.0607

Seilacher A 2007. The nature of vendobionts. In: Vickers-Rich P & Komarower P (Editors)―The rise and fall of the Ediacaran biota. Geological Society of London Special Publication 286: 387–397. DOI: https://doi.org/10.1144/SP286.28

Seilacher A & Pflüger F 1994. From biomats to benthic agriculture: A biohistoric revolution. In: Krumbein WE, Peterson DM & Stal LJ (Editors)―Biostabilization of Sediments, Bibliotheks-und Informationssystem der Carl von Ossietzky Universität, Odenburg: 97–105.

Shapiro JA 1998. Thinking about bacterial populations as multicellular organisms. Annual Review of Microbiology 52: 81–104. DOI: https://doi.org/10.1146/annurev.micro.52.1.81

Shahkarami S, Mángano MG & Buatois LA 2017. Discriminating ecological and evolutionary controls during the Ediacaran–Cambrian transition: trace fossils from the Soltanieh Formation of northern Iran. Palaeogeography, Palaeoclimatology, Palaeoecology 476: 15–27. DOI: https://doi.org/10.1016/j.palaeo.2017.03.012

Shahkarami S, Buatois LA, Mángano MG, Hagadorn JW & Almond J 2020. The Ediacaran–Cambrian boundary: Evaluating stratigraphic completeness. Precambrian Research 345: 105721. DOI: https://doi.org/10.1016/j.precamres.2020.105721

Shen B, Xiao S, Zhou C & Yuan X 2009. Yangtziramulus zhangi new genus and species, a carbonate-hosted macrofossil from the Ediacaran Dengying Formation in the Yangtze Gorges area, south China. Journal of Paleontology 83: 575–587. DOI: https://doi.org/10.1666/08-042R1.1

Sprigg RC 1947. Early Cambrian (?) jellyfishes from the Flinders Ranges, South Australia. Royal Society of South Australia Transactions 71: 212–224.

Srivastava P 2014. Largest Ediacaran discs from the Jodhpur Sandstone, Marwar Supergroup, India: their palaeobiological significance. Geoscience Frontiers 5: 183–191. DOI: https://doi.org/10.1016/j.gsf.2013.04.005

Steiner M & Reitner J 2001. Evidence of organic structures in Ediacara-type fossils and associated microbial mats. Geology 29: 1119–1122. DOI: https://doi.org/10.1130/0091-7613(2001)029<1119:EOOSIE>2.0.CO;2

Stubblefield SP & Taylor TN 1988. Recent advances in palaeomycology. New Phytologist 108: 3–25. DOI: https://doi.org/10.1111/j.1469-8137.1988.tb00200.x

Taylor TN & Taylor EL 1993. The biology and evolution of fossil plants. Prentice-Hall, Englewood Cliffs, New Jersey.

Taylor TN, Hass H & Kerp H 1997. A cyanolichen from the Lower Devonian Rhynie Chert. American Journal of Botany 84: 901–910. DOI: https://doi.org/10.2307/2446290

Thor G, Johansson P & Jönsson MT 2010. Lichen diversity and red-listed lichen species relationships with tree species and diameter in wooded meadows. Biodiversity and Conservation 19: 2307−2328. DOI: https://doi.org/10.1007/s10531-010-9843-8

Timdal E 2017. Endocarpon crystallinum found in Crete, a window-lichen new to Europe. Herzogia 30: 309−312. DOI: https://doi.org/10.13158/heia.30.1.2017.309

Ulrich W, Soliveres S, Thomas AD, Dougill AJ & Maestre FT 2016. Environmental correlates of species rank− abundance distributions in global drylands. Perspectives in Plant Ecology Evolution and Systematics 20: 56−64. DOI: https://doi.org/10.1016/j.ppees.2016.04.004

Vogel S 1955. Niedere Fensterpflanzen in der Südafrikanischen Wüste. Beitrage Biologie Pflanzen 31: 45–135.

Walcott CD 1917. Cambrian geology and paleontology, IV, No. 2, The Albertella fauna in British Columbia and Montana. Smithsonian Miscellaneous Collections 67(2444): 7–8.

Wade M 1969. Medusae from uppermost Precambrian or Cambrian sandstones in central Australia. Palaeontology 12: 351–365.

Wade RT 1935. The Triassic fishes of Brookvale, New South Wales. British Museum (Natural History), London.

Went DJ 2005. Pre-vegetation alluvial fan facies and processes: an example from the Cambro-Ordovician Rozel Conglomerate Formation, Jersey, Channel Islands. Sedimentology 52: 693–713. DOI: https://doi.org/10.1111/j.1365-3091.2005.00716.x

Xiao S, Shen B, Zhou C, Xie G & Yuan X 2005. A uniquely preserved Ediacaran fossil with direct evidence for a quilted bodyplan. U.S. National Academy of Sciences Proceedings 102: 10227–10232. DOI: https://doi.org/10.1073/pnas.0502176102

Yuan X, Xiao S & Taylor TN 2005. Lichen-like symbiosis 600 million years ago. Science 308: 1017–1020. DOI: https://doi.org/10.1126/science.1111347

Zhang X-L, Han J, Zhang Z-F, Liu HQ & Shu D-G 2002. Reconsideration of the supposed naraoiid larva from the Early Cambrian Chengjiang Lagerstätten. Palaeontology 46: 447–465. DOI: https://doi.org/10.1111/1475-4983.00307

Downloads

Published

2022-07-22

How to Cite

Retallack, G. J. (2022). Internal structure of Cambrian vendobionts Arumberia, Hallidaya, and Noffkarkys preserved by clay in Montana, USA. Journal of Palaeosciences, 71(1), 1–18. https://doi.org/10.54991/jop.2022.539

Issue

Section

Research Articles