Ediacaran periglacial sedimentary structures

Authors

  • Gregory J. Retallack Department of Geological Sciences, University of Oregon, Eugene, Oregon 97403, U.S.A.

DOI:

https://doi.org/10.54991/jop.2021.8

Keywords:

Kimberichnus, Epibaion, Periglacial, Vagrant lichens, Frost boils, Needle ice

Abstract

Ediacaran fossils are sometimes reconstructed as colorful organisms of clear azure seas like tropical lagoons, or as ghostlike forms in deep, dark oceans. Alternatively, they can be envisaged as sessile organisms in frigid soils, to judge from associated Ediacaran periglacial paleosols and tillites. Additional evidence of cool Ediacaran paleoclimate now comes from reinterpretation of two supposed trace fossils: (1) grooves radiating from Ediacaran fossils interpreted as radular feeding traces (“Kimberichnus”) of supposed molluscs (Kimberella), and (2) chains of fossil impressions interpreted as feeding traces (“Epibaion”) of supposed worms or placozoans (Yorgia, Dickinsonia). The grooves are not curved with rounded ends like radular scratches, but with sharp or crudely bifid tips like frost flowers and frost needles extruded from plant debris. Fossil impressions in chains are not sequential feeding stations, but in polygonal arrays, like vagrant lichens and mosses displaced by wind gusts and periglacial frost boils. Thus, neither the taphomorph “Epibaion”, nor the ice crystal pseudomorphs “Kimberichnus” are valid ichnogenera. These newly recognized frost boils, needle ice, frost feathers, frost hair and frost shawls are additions to isotopic and glendonite evidence that the Ediacaran was another period in Earth history when even low paleolatitudes were cool.

सारांश

एडियाकारन जीवाश्मों को कभी-कभी उष्णकटिबंधीय लैगून जैसे, स्पष्ट नीले समुद्र के रंगीन जीवों के रूप में या गहरे, अंधेरे महासागरों में भयंकर बनावट के रूपों  में पुनर्निर्मित किया जाता है। वैकल्पिक रूप से, उन्हें संबंधित एडियाकारन पेरिग्लेशियल, पुरामृदा और टिलाइट्स से निर्धारण करने के लिए, मिट्टी में अव्रिंत जीवों के रूप में परिकल्पित किया जा सकता है। ठंडे एडियाकारन पुराजलवायु के अतिरिक्त प्रमाण अब दो कथित ट्रेस जीवाश्मों की पुनर्व्याख्या से आते हैं: (1) एडियाकारन जीवाश्मों से निकलने वाले खांचे, जिन्हें कथित मोलस्क (किम्बरेला ) के रेडुलर फीडिंग  ट्रेसेज ("किम्बेरिक्नस ") के रूप में व्याख्या की गई है। (2) जीवाश्म मुद्राश्म की श्रृंखला की कथित कृमियों या प्लाकोज़ोन्स (योर्गिया, डिकिन्सोनिया ) के भक्षण निशान ("एपिबैओन ") के रूप में व्याख्या की गई । खांचे रेडुलर खरोंच की तरह गोल सिरों के साथ घुमावदार नहीं होते हैं, लेकिन पौधे के मलबे से निकाले गए फ़्रोस्ट फ्लावर्स और फ़्रोस्ट नीडल की तरह तेज या कुटिल रूप से द्विभाजित युक्तियों के साथ होते हैं। जंजीरों में जीवाश्म मुद्राश्म अनुक्रमिक फीडिंग स्टेशन नहीं हैं, बल्कि बहुभुज सारणियों में हैं, जैसे हवा के झोंकों और पेरीग्लेशियल फ्रॉस्ट बर्फीले बौइल्स द्वारा विस्थापित स्वेछाचारी लाइकेन और मॉसैज़। अत: न तो दबी हुई संरचना "एपिबैओन ", और न ही बर्फ के माणभ सूडोमोर्फ "किम्बेरिक्नस " वैध इकनोजाति हैं। ये नए पहचाने गए नीडल आइस, फ्रॉस्ट हेयर और फ्रॉस्ट शौल समस्थानिक और ग्लेंडोनाइट साक्ष्य में संयोजन हैं कि एडियाकरन पृथ्वी के इतिहास में एक और अवधि थी जब यहां तक ​​कि निचले पुराआक्षांश भी ठंडे थे।

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Allan JA 1926. Ice crystal markings. American Journal of Science 11: 494−500. DOI: https://doi.org/10.2475/ajs.s5-11.66.494

Antcliffe JB & Brasier MD 2007. Charnia and sea pens are poles apart. Geological Society of London Journal 164: 49−51. DOI: https://doi.org/10.1144/0016-76492006-080

Antcliffe JB, Callow RHT & Brasier MD 2014. Giving the early fossil record of sponges a squeeze. Biological Reviews 89: 972−1004. DOI: https://doi.org/10.1111/brv.12090

Antcliffe JB, Gooday AJ & Brasier MD 2011. Testing the protozoan hypothesis for Ediacaran fossils: a developmental analysis of Palaeopascichnus. Palaeontology 54:1157−1175. DOI: https://doi.org/10.1111/j.1475-4983.2011.01058.x

Antcliffe JB, Hancy AD & Brasier MD 2015. A new ecological model for the ∼565Ma Ediacaran Biota of Mistaken Point, Newfoundland. Precambrian Research 268: 227−242. DOI: https://doi.org/10.1016/j.precamres.2015.06.015

Arakawa K 1955. The growth of ice crystals in water. Journal of Glaciology 17: 463−464. DOI: https://doi.org/10.3189/002214355793702226

Bandel K & Shinaq R 2003. Sediments of the Precambrian Wadi Abu Barqa Formation influenced by life and their relation to the Cambrian sandstones in southern Jordan. Freiberger Forschungshefte 499: 78−91.

Benedict JB 1990. Winter frost injury to lichens: Colorado Front Range. Bryologist 93: 423−426. DOI: https://doi.org/10.2307/3243606

Benedict JB 2009. A review of lichenometric dating and its applications to archaeology. American Antiquity 74: 143−172. DOI: https://doi.org/10.1017/S0002731600047545

Birnbaum KD & Alvarado AS 2008. Slicing across kingdoms: regeneration in plants and animals. Cell 132: 697–710 DOI: https://doi.org/10.1016/j.cell.2008.01.040

Bobrovskiy I, Hope JM, Ivantsov A, Nettersheim BJ, Hallmann C & Brocks JJ 2018. Ancient steroids establish the Ediacaran fossil Dickinsonia as one of the earliest animals. Science 361: 1246–1249. DOI: https://doi.org/10.1126/science.aat7228

Boike J, Ippisch O, Overduin PP, Hagedorn B & Roth K 2008. Water, heat and solute dynamics of a mud boil, Spitsbergen. Geomorphology 95: 61−73. DOI: https://doi.org/10.1016/j.geomorph.2006.07.033

Brown J & Krieg RA 1983. Guidebook to permafrost and related features along the Elliott and Dalton Highways from Fox to Prudhoe Bay, Alaska. International Permafrost Conference Fairbanks Guidebook 4: 230 pp. DOI: https://doi.org/10.14509/266

Callow RH & Brasier MD 2009. Remarkable preservation of microbial mats in Neoproterozoic siliciclastic settings: Implications for Ediacaran taphonomic models. Earth-Science Reviews 96: 207−219 DOI: https://doi.org/10.1016/j.earscirev.2009.07.002

Chumakov NM 2009. The Baykonurian Glaciohorizon of the Late Vendian. Stratigraphy and Geological Correlation 17: 373–381. DOI: https://doi.org/10.1134/S0869593809040029

Clites EC, Droser EL & Gehling JG 2012. The advent of hard-part structural support among the Ediacara biota: Ediacaran harbinger of a Cambrian mode of body construction. Geology 40: 307−310. DOI: https://doi.org/10.1130/G32828.1

Coulson SJ & Midgley NG 2012. The role of glacier mice in the invertebrate colonisation of glacial surfaces: the moss balls of the Falljökull, Iceland. Polar Biology 35: 1651–1658. DOI: https://doi.org/10.1007/s00300-012-1205-4

Cuthill JFH & Conway Morris S 2014. Fractal branching organizations of Ediacaran rangeomorph fronds reveal a lost Proterozoic body plan. U.S. National Academy of Sciences Proceedings 111: 13122−13126. DOI: https://doi.org/10.1073/pnas.1408542111

Denis M, Buoncristiani JF, Konaté M, Guiraud M & Eyles N 2007. The origin and glaciodynamic significance of sandstone ridge networks from the Hirnantian glaciation of the Djado Basin (Niger). Sedimentology 54: 1225−1243. DOI: https://doi.org/10.1111/j.1365-3091.2007.00879.x

Dickson JH & Johnson RE 2014. Mosses and the beginning of plant succession on the Walker Glacier, southeastern Alaska. Lindbergia 37: 60–65. DOI: https://doi.org/10.25227/linbg.01052

Dionne JC 1985. Formes, figures et faciès sédimentaires glaciels des estrans vaseux des régions froides. Palaeogeography Palaeoclimatology Palaeoecology 51: 415−451. DOI: https://doi.org/10.1016/0031-0182(85)90097-5

Dornbos SQ, Bottjer DJ & Chen J 2004. Evidence for seafloor microbial mats and associated metazoan lifestyles in Lower Cambrian phosphorites of southwest China. Lethaia 37: 127−137.

Dott RH & Bourgeois J 1982. Hummocky stratification: significance of its variable bedding sequences. Geological Society of America Bulletin 93: 663−680. DOI: https://doi.org/10.1130/0016-7606(1982)93<663:HSSOIV>2.0.CO;2

Droser ML, Gehling JG, Tarhan LG, Evans SD, Hall CMS, Hughes IV, Hughes EB, Dzaugis ME, Dzaugis MP, Dzaugis PW & Rice D 2019. Piecing together the puzzle of the Ediacara Biota: excavation and reconstruction at the Ediacara National Heritage Site Nilpena (South Australia). Palaeogeography, Palaeoclimatology, Palaeoecology 513: 132–145. DOI: https://doi.org/10.1016/j.palaeo.2017.09.007

Dunn FS, Liu AG & Donoghue PCJ 2017. Ediacaran developmental biology. Biological Review 93: 914–921. DOI: https://doi.org/10.1111/brv.12379

Dyson IA 1985. Frond-like fossils from the base of the late Precambrian Wilpena Group, South Australia. Nature 318: 283–285. DOI: https://doi.org/10.1038/318283a0

Dzik J 2003. Anatomical information content in the Ediacaran fossils and their possible zoological affinities. Integrative and Comparative Biology 43: 114-126. DOI: https://doi.org/10.1093/icb/43.1.114

Evans SD, Droser ML & Gehling JG 2015. Dickinsonia liftoff: evidence of current derived morphologies. Palaeogeography, Palaeoclimatology, Palaeoecology 434: 28–33. DOI: https://doi.org/10.1016/j.palaeo.2015.02.006

Evans SD, Droser ML & Gehling JG 2017. Highly regulated growth and development of the Ediacara macrofossil Dickinsonia costata. PloS One 12: e0176874. DOI: https://doi.org/10.1371/journal.pone.0176874

Evans SD, Gehling JG & Droser ML 2019a. Slime travelers: Early evidence of animal mobility and feeding in an organic mat world. Geobiology 17: 490–509. DOI: https://doi.org/10.1111/gbi.12351

Evans SD, Huang W, Gehling JG, Kisailus D & Droser ML 2019b. Stretched, mangled, and torn: Responses of the Ediacaran fossil Dickinsonia to variable forces. Geology 47: 1049−1053. DOI: https://doi.org/10.1130/G46574.1

Eyles N & Clark BM 1986. Significance of hummocky and swaley cross-stratification in late Pleistocene lacustrine sediments of the Ontario basin, Canada. Geology 14: 679–682. DOI: https://doi.org/10.1130/0091-7613(1986)14<679:SOHASC>2.0.CO;2

Fedonkin MA, Gehling JG, Grey K, Narbonne GM & Vickers-Rich P 2007a. The Rise of Animals: Evolution and Diversification of the Kingdom Animalia: Johns Hopkins University Press, Baltimore, 326 pp.

Fedonkin MA, Simonetta A & Ivantsov AY 2007b. New data on Kimberella, the Vendian mollusc-like organism (White Sea region, Russia): palaeoecological and evolutionary implications. In: Vickers-Rich, and P., Komarower, P., eds., The rise and fall of the Ediacaran biota. Geological Society London Special Publication 286: 157–179. DOI: https://doi.org/10.1144/SP286.12

Fedonkin MA & Waggoner BM 1997. The late Precambrian fossil Kimberella is a mollusc-like bilaterian organism. Nature 388: 868−871. DOI: https://doi.org/10.1038/42242

Gehling JG 2000. Environmental interpretation and a sequence stratigraphic framework for the terminal Proterozoic Ediacara Member within the Rawnsley Quartzite, South Australia. Precambrian Research 100: 65–95. DOI: https://doi.org/10.1016/S0301-9268(99)00069-8

Gehling JG & Droser ML 2018. Ediacaran scavenging as a prelude to predation. Emerging Topics in Life Sciences 2: 213–222. DOI: https://doi.org/10.1042/ETLS20170166

Gehling JG & Rigby JK 1996. Long expected sponges from the Neoproterozoic Ediacara fauna of South Australia. Journal of Paleontology 70: 185−195. DOI: https://doi.org/10.1017/S0022336000023283

Gehling JG, Runnegar BN & Droser ML 2014. Scratch traces of large Ediacaran bilaterian animals. Journal of Paleontology 88: 284−298. DOI: https://doi.org/10.1666/13-054

Girard F, Ghienne JF, Du-Bernard X & Rubino JL 2015. Sedimentary imprints of former ice-sheet margins: Insights from an end-Ordovician archive (SW Libya). Earth-Science Reviews 148: 259-289. DOI: https://doi.org/10.1016/j.earscirev.2015.06.006

Grazhdankin D 2004. Patterns of distribution in the Ediacaran biotas: facies versus biogeography and evolution. Paleobiology 30: 203−221. DOI: https://doi.org/10.1666/0094-8373(2004)030<0203:PODITE>2.0.CO;2

Grazhdankin D & Gerdes G 2007. Ediacaran microbial colonies. Lethaia 40: 201–210. DOI: https://doi.org/10.1111/j.1502-3931.2007.00025.x

Hamilton TD & Ashley GM 1993. Epiguruk: a late Quaternary environmental record from northwestern Alaska. Geological Society of America Bulletin 105: 583–602. DOI: https://doi.org/10.1130/0016-7606(1993)105<0583:EALQER>2.3.CO;2

Hammer S 2000. Meristem growth dynamics and branching patterns in the Cladoniaceae. American Journal of Botany 87: 33−47. DOI: https://doi.org/10.2307/2656683

Herschel JFW 1833. Notice of a remarkable deposition of ice around decaying stems of vegetables during frost. Philosophical Magazine 2: 110−111. DOI: https://doi.org/10.1080/14786443308647983

Hillefors A 1976. Needle ice on dead and rotten branches. Weather 31: 163−168. DOI: https://doi.org/10.1002/j.1477-8696.1976.tb04426.x

Horváth Z, Michéli E, Mindszenty A & Berényi-Üveges J 2005. Soft sediment deformation structures in Late Miocene-Pleistocene sediments on the pediment of the Ma´tra Hills (Visonta, Atkár, Verseg): cryoturbation, load structures or seismites? Tectonophysics 410: 81–95. DOI: https://doi.org/10.1016/j.tecto.2005.08.012

Hotaling S, Bartholomaus TC & Gilbert SL 2020. Rolling stones gather moss: Movement and longevity of moss balls on an Alaskan glacier. Polar Biology 43: 735–744. DOI: https://doi.org/10.1007/s00300-020-02675-6

Ivantsov AY 2011. Feeding traces of Proarticulata—the Vendian Metazoa. Paleontological Journal 45: 237−248. DOI: https://doi.org/10.1134/S0031030111030063

Ivantsov AY 2013. Trace Fossils of Precambrian Metazoans “Vendobionta” and “mollusks”. Stratigraphy and Geological Correlation 21: 252−264. DOI: https://doi.org/10.1134/S0869593813030039

Ivantsov AY & Malakhovskaya YE 2002. Giant traces of Vendian animals. Doklady Earth Sciences 385A: 618−622.

Ivantsov A, Zakrevskaya M, Nagovitsyn A, Krasnova A, Bobrovskiy I & Luzhnaya E 2020. Intravital damage to the body of Dickinsonia (Metazoa of the late Ediacaran). Journal of Paleontology 94: 1019−34. DOI: https://doi.org/10.1017/jpa.2020.65

Jenkins RJ 1986. Are enigmatic markings in Adelaidean of Flinders Ranges fossil ice-tracks? Nature 323: 472. DOI: https://doi.org/10.1038/323472a0

Jenkins RJF, Ford CH & Gehling JG 1983. The Ediacara Member of the Rawnsley Quartzite: the context of the Ediacara assemblage (late Precambrian, Flinders Ranges). Geological Society of Australia Journal 30: 101–119. DOI: https://doi.org/10.1080/00167618308729240

Johnsson G 1963. Periglacial phenomena in southern Sweden. Lund Studies in Geography 21: 378–403. DOI: https://doi.org/10.2307/520321

Kessler MA & Werner BT 2003. Self-organization of sorted patterned ground. Science 299: 380−384. DOI: https://doi.org/10.1126/science.1077309

Lawler DM 1988. Environmental limits of needle ice: a global survey. Arctic and Alpine Research 20: 137−159. DOI: https://doi.org/10.2307/1551494

Lawler DM 1989. Some observations on needle ice. Weather 44: 406−409. DOI: https://doi.org/10.1002/j.1477-8696.1989.tb04966.x

Lawler DM 1993. Needle ice processes and sediment mobilization on river banks of River Ilston, West Glamorgan, U.K. Journal of Hydrology 150: 81−114. DOI: https://doi.org/10.1016/0022-1694(93)90157-5

Leonov MV, Ivantsov Y & Zakrevskaya MA 2007. Guidebook of the field paleontological excursion, Zimnie Gory, locality of the Vendian (Ediacaran) soft-bodied animals. Paleontological Institute, Russian Academy of Sciences, Moscow, 30 pp.

Linnemann U, Pidal AP, Hofmann M, Drost K, Quesada C, Gerdes A, Marko L, Gärtner A, Zieger J, Ulrich J & Krause R 2017. A~ 565 Ma old glaciation in the Ediacaran of peri-Gondwanan West Africa. International Journal of Earth Sciences 107: 885−893. DOI: https://doi.org/10.1007/s00531-017-1520-7

Liu AG & Dunn FS 2020. Filamentous connections between Ediacaran fronds. Current Biology 30: 1-7. DOI: https://doi.org/10.1016/j.cub.2020.01.052

Mark WD 1932. Fossil impressions of ice crystals in Lake Bonneville beds. Journal of Geology 40: 171−176. DOI: https://doi.org/10.1086/623932

Mason BJ, Bryant GW & Van den Heuvel AP 1963. The growth habits and surface structure of ice crystals. Philosophical Magazine 8: 505−526. DOI: https://doi.org/10.1080/14786436308211150

Matthews V 1999. Origin of horizontal needle ice at Charit Creek Station, Tennessee. Permafrost and Periglacial Processes 10: 205−207. DOI: https://doi.org/10.1002/(SICI)1099-1530(199904/06)10:2<205::AID-PPP313>3.0.CO;2-E

McIlroy D, Brasier MD & Lang AS 2009. Smothering of microbial mats by macrobiota: implications for the Ediacara biota. Geological Society London Journal 166: 1117–1121. DOI: https://doi.org/10.1144/0016-76492009-073

McMahon WJ, Liu AG, Tindal BH & Kleinhans MG 2020. Ediacaran life close to land: Coastal and shoreface habitats of the Ediacaran macrobiota, the Central Flinders Ranges, South Australia. Journal of Sedimentary Research 90:1463–1499. DOI: https://doi.org/10.2110/jsr.2020.029

Meng F, Ni P, Schiffbauer JD, Yuan X, Zhou C, Wang Y & Xia M 2011. Ediacaran seawater temperature: evidence from inclusions of Sinian halite. Precambrian Research 184: 63−69. DOI: https://doi.org/10.1016/j.precamres.2010.10.004

Mitchell EG, Kenchington CG, Liu AG, Matthews JJ & Butterfield NJ 2015. Reconstructing the reproductive mode of an Ediacaran macro-organism. Nature 524: 343−346. DOI: https://doi.org/10.1038/nature14646

Narbonne GM, Laflamme M, Trusler PW, Dalrymple RW & Greentree C 2014. Deep-water Ediacaran fossils from northwestern Canada: taphonomy, ecology, and evolution. Journal of Paleontology 88: 207–223. DOI: https://doi.org/10.1666/13-053

Niessen FB, Spauwen PH, Schalkwijk J & Kon M 1999. On the nature of hypertrophic scars and keloids: a review. Plastic Reconstructive Surgery 104: 1435−1458. DOI: https://doi.org/10.1097/00006534-199910000-00031

Nutz A, Ghienne JF & Štorch P 2013. Circular, cryogenic structures from the Hirnantian deglaciation sequence (Anti-Atlas, Morocco). Journal of Sedimentary Research 83: 115−131. DOI: https://doi.org/10.2110/JSR.2013.11

Overduin PP & Kane KL 2006. Ice content and frost boils: field observations. Permafrost and Periglacial Processes 17: 291−307. DOI: https://doi.org/10.1002/ppp.567

Owen G 2003. Load structures; gravity-driven sediment mobilization in the shallow subsurface. In: van Rensbergen P, Hillis RR, Maltman AJ & Morley CK, eds., Subsurface Sediment Mobilization. Geological Society London Special Publication 216: 21−34. DOI: https://doi.org/10.1144/GSL.SP.2003.216.01.03

Patton H & Hambrey MJ 2009. Ice-marginal sedimentation associated with the Late Devensian Welsh ice cap and Irish sea-ice stream: Tonfanau, Wales. Geologists Association Proceedings 120: 256−279. DOI: https://doi.org/10.1016/j.pgeola.2009.10.004

Pérez FL 1994. Vagant cryptogams in a paramo of the high Venezuelan Andes. Flora 189: 263−276. DOI: https://doi.org/10.1016/S0367-2530(17)30601-1

Pérez, FL 2020. Andean rolling mosses gather on stone pavements: Geoecology of Grimmia longirostris Hook. in a high periglacial páramo. Catena 187:104389. DOI: https://doi.org/10.1016/j.catena.2019.104389

Popov V, Iosifidi A & Khramov A 2002. Paleomagnetism of Upper Vendian sediments from the Winter Coast, White Sea region, Russia: Implications for the paleogeography of Baltica during Neoproterozoic times. Journal of Geophysical Research 107: EPM 10.1−EPM 10.8. DOI: https://doi.org/10.1029/2001JB001607

Pu JP, Bowring SA, Ramezani J, Myrow P, Raub TD, Landing E, Mills A, Hodgin E & Macdonald FA 2016. Dodging snowballs: Geochronology of the Gaskiers glaciation and the first appearance of the Ediacaran biota. Geology 44: 955−958. DOI: https://doi.org/10.1130/G38284.1

Retallack GJ 1986. Reappraisal of a 2200 Ma-old paleosol from near Waterval Onder, South Africa. Precambrian Research 32: 195−232. DOI: https://doi.org/10.1016/0301-9268(86)90007-0

Retallack GJ 2007. Decay, growth, and burial compaction of Dickinsonia, an iconic Ediacaran fossil. Alcheringa 31: 215−240. DOI: https://doi.org/10.1080/03115510701484705

Retallack GJ 2011. Neoproterozoic glacial loess and limits to snowball Earth. Geological Society of London Journal 168: 289−308. DOI: https://doi.org/10.1144/0016-76492010-051

Retallack GJ 2012a. Were Ediacaran siliciclastics of South Australia coastal or deep marine? Sedimentology 59: 1208−1236. DOI: https://doi.org/10.1111/j.1365-3091.2011.01302.x

Retallack GJ 2012b. Criteria for distinguishing microbial mats and earths. In: Noffke N & Chafetz H, eds., Microbial mats in siliciclastic depositional systems through time, Society of Economic Paleontologists and Mineralogists Special Paper 101: 136−152. DOI: https://doi.org/10.2110/sepmsp.101.139

Retallack GJ 2013a. Ediacaran Gaskiers glaciation of Newfoundland reconsidered. Journal of the Geological Society 170: 19−36. DOI: https://doi.org/10.1144/jgs2012-060

Retallack GJ 2013b. Ediacaran life on land. Nature 493: 89−92. DOI: https://doi.org/10.1038/nature11777

Retallack GJ 2013c. Comment on “Trace fossil evidence for Ediacaran bilaterian animals with complex behaviors” by Chen et al. [Precambrian Res. 224 (2013) 690−701]. Precambrian Research 231: 383−385. DOI: https://doi.org/10.1016/j.precamres.2013.04.005

Retallack GJ 2015. Acritarch evidence of a late Precambrian adaptive radiation of Fungi. Botanica Pacifica 4: 19−33. DOI: https://doi.org/10.17581/bp.2015.04203

Retallack GJ 2016. Ediacaran sedimentology and paleoecology of Newfoundland reconsidered. Sedimentary Geology 333: 15–31. DOI: https://doi.org/10.1016/j.sedgeo.2015.12.001

Retallack GJ 2017a. Comment on: “Dickinsonia liftoff: evidence of current derived morphologies” by Evans, S.D., Droser, M.L., Gehling, J.G.. Palaeogeography Palaeoclimatology Palaeoecology 485: 999−1001. DOI: https://doi.org/10.1016/j.palaeo.2015.07.005

Retallack GJ 2017b. Exceptional preservation of soft-bodied Ediacara Biota promoted by silica-rich oceans: comment. Geology 44: e407. DOI: https://doi.org/10.1130/G38763C.1

Retallack GJ 2019. Interflag sandstone laminae, a novel fluvial sedimentary structure with implication for Ediacaran paleoenvironments. Sedimentary Geology 379: 60–76. DOI: https://doi.org/10.1016/j.sedgeo.2018.11.003

Retallack GJ 2020. Boron paleosalinity proxy for deeply buried Paleozoic and Ediacaran fossils. Palaeogeography, Palaeoclimatology, Palaeoecology 540, 109536. DOI: https://doi.org/10.1016/j.palaeo.2019.109536

Retallack GJ, Gose B & Osterhout J 2015. Periglacial paleosols and Cryogenian paleoclimate near Adelaide, South Australia. Precambrian Research 263: 1−18. DOI: https://doi.org/10.1016/j.precamres.2015.03.002

Retallack GJ, Marconato A, Osterhout JT, Watts KE & Bindeman IN 2014. Revised Wonoka isotopic anomaly in South Australia and Late Ediacaran mass extinction. Geological Society of London Proceedings 171: 709−722. DOI: https://doi.org/10.1144/jgs2014-016

Schmidt PW & Williams GE 2010. Ediacaran palaeomagnetism and apparent polar wander path for Australia: no large true polar wander. Geophysical Journal International 182: 711−726. DOI: https://doi.org/10.1111/j.1365-246X.2010.04652.x

Seilacher A 1992. Vendobionta and Psammocorallia: lost construction of Precambrian evolution. Geological Society of London Journal 149: 607−613. DOI: https://doi.org/10.1144/gsjgs.149.4.0607

Seilacher A 2007. Trace Fossil Analysis. Springer, Berlin, 226 pp.

Seilacher A, Buatois LA & Mángano MB 2005. Trace fossils in the Ediacaran–Cambrian transition: Behavioral diversification, ecological turnover and environmental shift. Palaeogeography Palaeoclimatology Palaeoecology 227: 323−356. DOI: https://doi.org/10.1016/j.palaeo.2005.06.003

Shen C, Clarkson EN, Yang J, Lan T, Hou JB & Zhang XG 2014. Development and trunk segmentation of early instars of a ptychopariid trilobite from Cambrian Stage 5 of China. Nature Scientific Reports 4: 6970. DOI: https://doi.org/10.1038/srep06970

Serezhnikova EI 2007. Palaeophragmodictya spinosa sp. nov., a bilateral benthic organism from the Vendian of the southeast White Sea region. Paleontological Journal 41: 360−369. DOI: https://doi.org/10.1134/S0031030107040028

Silberbauer-Gottsberger I, Morawetz W & Gottsberger G 1977. Frost damage of cerrado plants in Botucatu, Brazil, as related to the geographical distribution of the species. Biotropica, 9: 253–261. DOI: https://doi.org/10.2307/2388143

Sperling EA & Vinther J 2010. A placozoan affinity for Dickinsonia and the evolution of late Proterozoic metazoan feeding modes. Evolution and Development 12: 201−209. DOI: https://doi.org/10.1111/j.1525-142X.2010.00404.x

Stimson MR, Miller RF, MacRae RA & Hinds SJ 2017. An ichnotaxonomic approach to wrinkled microbially induced sedimentary structures. Ichnos 24: 291–316. DOI: https://doi.org/10.1080/10420940.2017.1294590

Sugimoto K, Gordon SP & Meyerowitz EM 2011. Regeneration in plants and animals: dedifferentiation, transdifferentiation, or just differentiation? Trends in Cell Biology 21: 212−218. DOI: https://doi.org/10.1016/j.tcb.2010.12.004

Tahata M, Ueno Y, Ishikawa T, Sawaki Y, Murakami K, Han J, Shu D, Li Y, Guo J, Yoshida N & Komiya T 2013. Carbon and oxygen chemostratigraphy of the Yangtze platform, South China: decoding temperature and environmental changes through the Ediacaran. Gondwana Research 23: 333−353. DOI: https://doi.org/10.1016/j.gr.2012.04.005

Talbot MR 1981. The Early Paleozoic (?) diamictites of southeast Ghana. In: Harland MJ & Hambrey WB, eds., Earth’s pre-Pleistocene glacial record. Cambridge University Press, New York, pp. 108−112.

Tarhan LG, Droser ML, Gehling JG & Dzaugis MP 2015. Taphonomy and morphology of the Ediacara form genus Aspidella. Precambrian Research 257: 124−136. DOI: https://doi.org/10.1016/j.precamres.2014.11.026

Tarhan LG, Hood AV, Droser ML, Gehling JG & Briggs DE 2016. Exceptional preservation of soft-bodied Ediacara Biota promoted by silica-rich oceans. Geology 44: 951–954. DOI: https://doi.org/10.1130/G38542.1

Tarhan LG, Droser ML, Gehling JG & Dzaugis MP 2017. Microbial mat sandwiches and other anacutalistic sedimentary features of the Ediacara Member (Rawnsley Quartzite, South Australia: implications for interpretation of the Ediacaran sedimentary record. Palaios 32: 181–194. DOI: https://doi.org/10.2110/palo.2016.060

Valcárcel-Díaz M, Carrera-Gómez P, Goronato A, Castillo-Rodríguez F, Rabassa J & Pérez-Alberti R 2006. Cryogenic landforms in the Sierras de Alvear, Fuegian Andes, Argentina. Permafrost and Periglacial Processes 17: 317−376. DOI: https://doi.org/10.1002/ppp.564

Vernhet E, Youbi N, Chellai EH, Villeneuve M & El Archi A 2012. The Bou-Azzer glaciation: evidence for an Ediacaran glaciation on the west African craton (Anti-Atlas, Morocco). Precambrian Research 196: 106−112. DOI: https://doi.org/10.1016/j.precamres.2011.11.009

Vopata J, Aber JS & Kalm V 2006. Patterned ground in the Culebra Range, southern Colorado. Emporia State Research Studies 43: 8−21.

Wagner G & Mätzler C 2008. Haareis auf morschem Laubholz als biophysikalisches Phänomen. Forschungsbericht Universität Bern 2008-05-MW, 1−31.

Walker DA, Kuss P, Epstein HE, Kade AN, Vonlanthen CM, Raynolds MK & Daniels FJA 2011. Arctic patterned-ground ecosystems: a synthesis of field studies and models along a North American Arctic transect. Applied Vegetation Science 14: 440−463. DOI: https://doi.org/10.1111/j.1654-109X.2011.01149.x

Wang Z, Wang J, Suess E, Wang G, Chen C & Xiao S 2017. Silicified glendonites in the Ediacaran Doushantou Formation (South China) and their potential paleoclimatic implications. Geology 45: 115–118. DOI: https://doi.org/10.1130/G38613.1

Weinberger R 2001. Evolution of polygonal patterns in stratified mud during desiccation: the role of flaw distribution and layer boundaries. Geological Society of America Bulletin 113: 20−31. DOI: https://doi.org/10.1130/0016-7606(2001)113<0020:EOPPIS>2.0.CO;2

Wheeler RL 2002. Distinguishing seismic from no-seismic soft-sediment structures: criteria from seismic-hazard analysis. In: Ettensohn FR, Rast N & Brett CE, eds., Ancient Seismites. Geological Society of America Special Paper 359: 1–11. DOI: https://doi.org/10.1130/0-8137-2359-0.1

Williams GE 1986. Precambrian permafrost horizons as indicators of paleoclimate. Precambrian Research 32: 233−242. DOI: https://doi.org/10.1016/0301-9268(86)90008-2

Yuan X, Xiao S & Taylor TN 2005. Lichen-like symbiosis 600 million years ago. Science 308, 1017–1020. DOI: https://doi.org/10.1126/science.1111347

Zakrevskaya M 2014. Paleoecological reconstruction of the Ediacaran benthic macroscopic communities of the White Sea (Russia). Palaeogeography Palaeoclimatology Palaeoecology 410: 27–38. DOI: https://doi.org/10.1016/j.palaeo.2014.05.021

Downloads

Published

2021-09-10

How to Cite

Gregory J. Retallack. (2021). Ediacaran periglacial sedimentary structures. Journal of Palaeosciences, 70((1-2), 5–30. https://doi.org/10.54991/jop.2021.8