Palaeozoic and Mesozoic palaeo–wildfires: An overview on advances in the 21st Century


  • André Jasper Programa de Pós–Graduação em Ambiente e Desenvolvimento (PPGAD). Universidade do Vale do Taquari–Univates–95.914–014, Lajeado, Rio Grande do Sul, Brazil
  • Ândrea Pozzebon–Silva Programa de Pós–Graduação em Ambiente e Desenvolvimento (PPGAD). Universidade do Vale do Taquari–Univates–95.914–014, Lajeado, Rio Grande do Sul, Brazil
  • Júlia Siqueira Carniere Programa de Pós–Graduação em Ambiente e Desenvolvimento (PPGAD). Universidade do Vale do Taquari–Univates–95.914–014, Lajeado, Rio Grande do Sul, Brazil
  • Dieter Uhl Senckenberg Forschungsinstitut und Naturmuseum, Senckenberganlage 25, 60325 Frankfurt am Main, Germany



Palaeo–wildfire, Charcoal, Pyrogenic Inertinites, Silurian, Devonian, Carboniferous, Permian, Triassic, Jurassic, Cretaceous


Fire is a major driver for the evolution of biodiversity throughout the Phanerozoic and occurs in continental palaeoenvironments since the advent of the first land plants in the Silurian. The detection of palaeo–wildfire events can be based on different proxies, and charcoal is widely accepted as the most reliable evidence for such events in sedimentary layers. Although the identification of sedimentary charcoal as the product of incomplete combustion was the subject of controversial scientific discussions, palaeobotanical data can be used to confirm the pyrogenic origin of such material. In an overview on Palaeozoic and Mesozoic charcoal remains, differences in the number of published records can be detected for individual periods; including phases with both, lower (Silurian, Triassic, Jurassic) and higher (Devonian, Carboniferous, Permian, Cretaceous) numbers of published evidences for palaeo–wildfires. With the aim to discuss selected advances in palaeo–wildfire studies since the beginning of the 21st Century, we present an overview on the published occurrences of charcoal for an interval from the Silurian up to the Cretaceous. It was possible to confirm that a lack of detailed palaeobotanical data on the subject is detected in some intervals and regions, despite the high potential of occurrences detected in form of pyrogenic inertinites by coal petrographic studies. Although such temporal and regional gaps can be explained by taphonomic and palaeoenvironmental biases, it also indicates the scientific potential of future studies in diverse palaeogeographical and temporal settings.


Download data is not yet available.


Metrics Loading ...


Abu Hamad AMB, Jasper A & Uhl D 2012. The record of Triassic charcoal and other evidence for palaeo-wildfires: Signal for atmospheric oxygen levels, taphonomic biases or lack of fuel? International Journal of Coal Geology 96-97: 60–71. DOI:

Abu Hamad AMB, Jasper A & Uhl D 2013. Charcoal remains from the Mukheiris Formation of Jordan – the first evidence of palaeowildfire from the Anisian (Middle Triassic) of Gondwana. Jordan Journal of Earth and Environmental Sciences 5: 17–22.

Abu Hamad AMB, Jasper A & Uhl D 2014. Wood remains from the Late Triassic (Carnian) Abu Ruweis Formation of Jordan and their palaeoenvironmental significance. Journal of African Earth Sciences 95: 168–174. DOI:

Abu Hamad AMB, Amireh B, El Atfy H, Jasper A & Uhl D 2016a. Fire in a Weichselia-dominated coastal ecosystem from the Early Cretaceous (Barremian) of the Kurnub Group in NW Jordan. Cretaceous Research 66: 82–93. DOI:

Abu Hamad AMB, Amireh B, Jasper A & Uhl D 2016b. New palaeobotanical data from the Jarash Formation (Aptian-Albian, Kurnub Group) of NW Jordan. The Palaeobotanist 65: 19–29. DOI:

Algeo TJ & Ingall E 2007. Sedimentary Corg: P ratios, paleocean ventilation, and Phanerozoic atmospheric pO2.Palaeogeography, Palaeoclimatology, Palaeoecology 256: 130–155. DOI:

Arzadún G, Cisternas ME, Cesaretti NN & Tomezzoli RN 2017. Presence of charcoal as evidence of paleofires in the Claromecó Basin, Permian of Gondwana, Argentina: Diagenetic and paleoenvironment analysis based on coal petrography studies. GeoResJ 14: 121–134. DOI:

Belcher CM 2010. From fiery beginnings: wildfires facilitated the spread of angiosperms in the Cretaceous. New Phytologist 188: 913–915. DOI:

Belcher CM, Collinson ME, Sweet AR, Hildebrand AR & Scott AC 2003. “Fireball passes and nothing burns”—The role of thermal radiation in the K-T event: Evidence from the charcoal record of North America. Geology 31: 1061–1064. DOI:

Belcher CM, Collinson ME & Scott AC 2005. Constraints on the thermal power released from the Chicxulub impactor: new evidence from multi-method charcoal analysis. Journal of the Geological Society 162: 591–602. DOI:

Belcher CM & McElwain JC 2008. Limits for Combustion in Low O2 Redefine Paleoatmospheric Predictions for the Mesozoic. Science 321: 1197–1200. DOI:

Belcher CM, Finch P, Collinson ME, Scott AC & Grassineau NV 2009. Geochemical evidence for combustion of hydrocarbons during the K-T impact event. Proceedings of the National Academy of Sciences of the United States of America 106: 4112–4117. DOI:

Belcher CM, Yearsley JM, Hadden RM, McElwain JC & Rein G 2010. Baseline intrinsic flammability of Earth’s ecosystems estimated from paleoatmospheric oxygen over the past 350 million years. Proceedings of the National Academy of Sciences (PNAS) 107: 22448–22453. DOI:

Belcher CM, Hadden RM, Rein G, Morgan JV, Artemieva N & Goldin T 2015. An experimental assessment of the ignition of forest fuels by the thermal pulse generated by the Cretaceous–Palaeogene impact at Chicxulub. Journal of the Geological Society 172: 175–185. DOI:

Belcher CM & Hudspith VA 2017. Changes to Cretaceous surface fire behaviour influenced the spread of the early angiosperms. New Phytologist 213: 1521–1532. DOI:

Benício JRW, Jasper A, Spiekermann R, Garavaglia L, Pires-Oliveira EF, Machado NTG & Uhl D 2019a. Recurrent palaeo-wildfires in a Cisularian coal seam: A palaeobotanical view on high-inertinite coals from the Lower Permian of the Paraná Basin, Brazil. PLOS One 14: e0213854. DOI:

Benício JRW, Jasper A, Spiekermann R, Rockenbach CI, Cagliari J, Pires-Oliveira EF & Uhl D 2019b. The first evidence of palaeo-wildfire from the Itararé Group, southernmost portion of the Paraná Basin, Brazil. Journal of South American Earth Sciences 93: 155–160. DOI:

Berner RA 2009. Phanerozoic atmospheric oxygen: new results using the GEOCARBSULF model. American Journal of Science 309: 603–606. DOI:

Bond WJ & Scott AC 2010. Fire and the spread of flowering plants in the Cretaceous. New Phytologist 188: 1137–1150. DOI:

Brown SAE, Scott AC, Glasspool IJ & Collinson ME 2012. Cretaceous wildfires and their impact on the Earth system. Cretaceous Research 36: 162–190. DOI:

Brown SAE, Collinson ME & Scott AC 2013. Did fire play a role in formation of dinosaur-rich deposits? An example from the Late Cretaceous of Canada. Palaeobiodiversity and Palaeoenvironments 93: 317–326. DOI:

Cai YF, Zhang H, Feng Z & Shen SZ 2021. Intensive wildfire associated with volcanism promoted the vegetation changeover in Southwest China during the Permian-Triassic transition. Frontiers in Earth Science 9: 58. DOI:

Cardoso D, Mizusaki AMP, Guerra-Sommer M, Menegat R, Jasper A & Uhl D 2018. Wildfires in the Triassic of Gondwana Paraná Basin. Journal of South American Earth Sciences 82: 193–206. DOI:

Clack JA, Bennett CE, Davies SJ, Scott AC, Sherwin JE & Smithson TR 2019. A Tournaisian (earliest Carboniferous) conglomerate-preserved non-marine faunal assemblage and its environmental and sedimentological context. PeerJ 6: e5972. DOI:

Cochrane MA 2019. Burning questions about ecosystems. Nature Geosciences 12: 82–87. DOI:

Coiffard C, Gomez B, Daviero-Gomez V & Dilcher DL 2012. Rise to dominance of angiosperm pioneers in European Cretaceous environments. Proceedings of the National Academy of Sciences (PNAS) 109: 20955–20959. DOI:

Cressler WL, 2001. Evidence of earliest known wildfires. Palaios 16: 171–174. DOI:<0171:EOEKW>2.0.CO;2

Daubrée MA 1844. Examen de charbon produits par voie ignée à l’époque houlliére. Compte Rendu hebdomadeires des Séances de l’Académie des Sciences 19: 126–129.

Daubrée MA 1846. Examen de charbon produits par voie ignée à l’époque houlliére et à l’époque liasique. Bulletin de la Société géologique de France 3: 153–158.

De Lima FJ, Pires EF, Jasper A, Uhl D, Saraiva AAF & Sayão JM 2019. Fire in the paradise: evidence of repeated palaeo-wildfires from the Araripe Fossil Lagerstätte (Araripe Basin, Aptian-Albian), Northeast Brazil. Palaeobiodiversity and Palaeoenvironments 99: 367–378. DOI:

De Lima FJ, Pires EF, Saraiva AAF, Sayão JM, Jasper A & Uhl D 2021. Early Cretaceous (Aptian–Albian) Wildfires in the Araripe Basin, Northeast Brazil: palaeoclimatic and palaeoenvironmental implications. In: Brazilian Paleofloras: from Paleozoic to Holocene. Eds.: Ianuzzi R, Rössler R, Kunzmann L. Springer Nature. DOI:

De Lima FJ, Sayão JM, de Oliveira Ponciano LCM, Weinschütz LC, Figueiredo RG, Rodrigues T, Bantim RAM, Saraiva AAF, Jasper A, Uhl D & Kellner AWA in press b. Wildfires in the Campanian of James Ross Island: a new macro-charcoal record for the Antarctic Peninsula. Polar Research.

Degani-Schmidt I, Guerra-Sommer M, Mendonça JdeO, Mendonça FJGR, Jasper A, Cazzulo-Klepzig M & Iannuzzi R 2015. Charcoalified logs as evidence of hypautochthonous/autochthonous wildfire events in a peat-forming environment from the Permian of southern Paraná Basin (Brazil). International Journal of Coal Geology 146: 55–67. DOI:

DiMichele WA, Hook RW, Nelson WJ & Chaney DS 2004. An unusual Middle Permian flora from the Blaine Formation (Pease River group: Leonardian–Guadalupian series) of King County, West Texas. Journal of Paleontology 78: 765–782. DOI:<0765:AUMPFF>2.0.CO;2

Diessel, CFK, 2010. The stratigraphic distribution of inertinite. International Journal of Coal Geology 81: 251–268. DOI:

Dos Reis M, Graça PML, Yanai AM, Ramos CJP & Fearnside PM 2021. Forest fires and deforestation in the central Amazon: Effects of landscape and climate on spatial and temporal dynamics. Journal of Environmental Management 288: 112310. DOI:

Dos Santos ÂCS, Celestino Holanda E, de Souza V, Guerra-Sommer M, Manfroi J, Uhl D & Jasper A 2016. Evidence of palaeo-wildfire from the late Early Cretaceous (Serra do Tucano Formation, Aptian-Albian) of Roraima (North Brazil). Cretaceous Research 57: 46–49. DOI:

El Atfy H, Anan T, Jasper A & Uhl D 2019a. Repeated occurrence of palaeo-wildfires during deposition of the Bahariya Formation (Early Cenomanian) of Egypt. Journal of Palaeogeography 8: 1–14. DOI:

El Atfy H, Havlik P, Krüger PS, Manfroi J, Jasper A & Uhl D 2019b. Pre-Quaternary wood decay ‘caught in the act’ by fire – Examples of plant-microbe-interactions preserved in charcoal from clastic sediments. Historical Biology 31: 952–961. DOI:

El Atfy H, Sallam H, Jasper A & Uhl D 2016. The first evidence of palaeo-wildfire from the Late Cretaceous (Campanian) of North Africa. Cretaceous Research 57: 306–310. DOI:

El Atfy H & Uhl D in press. Palynology and palynofacies of sediments surrounding the Edmontosaurus annectens mummy at the Senckenberg Naturmuseum in Frankfurt/Main (Germany). Zeitschrift der Deutschen Gesellschaft für Geowissenschaften.

Falcon-Lang HJ & Bashforth AR 2005. Morphology, anatomy, and upland ecology of large cordaitalean trees from the Middle Pennsylvanian of Newfoundland. Review of Palaeobotany and Palynology 135: 223–243. DOI:

Falcon-Lang HJ, Wheeler E, Baas P & Herendeen PS 2012. A diverse charcoalified assemblage of Cretaceous (Santonian) angiosperm woods from Upatoi Creek, Georgia, USA. Part 1: wood types with scalariform perforation plates. Review of Palaeobotany and Palynology 184: 49–73. DOI:

Falkowski PG 2005. The Rise of Oxygen over the Past 205 Million Years and the Evolution of Large Placental Mammals. Science 309: 2202–2204. DOI:

Feng Z, Wei HB, Ye RH, Sui Q, Gou XD, Guo Y, Liu LJ & Yang SL 2020. Latest Permian Peltasperm Plant From Southwest China and Its Paleoenvironmental Implications. Frontiers in Earth Science 8: 450. DOI:

Fletcher TL, Greenwood DR, Moss PT & Salisbury SW 2014. Paleoclimate of the late Cretaceous (Cenomanian–Turonian) portion of the Winton formation, Central-Western Queensland, Australia: New observations based on CLAMP and bioclimatic analysis. Palaios 29: 121–128. DOI:

Friis EM, Crane PR & Pedersen KR 2011. Early flowers and angiosperm evolution. Cambridge: Cambridge University Press. DOI:

Friis EM, Marone F, Pedersen KR, Crane PR & Stampanoni M 2014. Three-dimensional visualization of fossil flowers, fruits, seeds, and other plant remains using synchrotron radiation X-ray tomographic microscopy (SRXTM): new insights into Cretaceous plant diversity. Journal of Paleontology 88: 684–701. DOI:

Friis EM, Pedersen KR & Crane PR 2017. Kenilanthus, a new eudicot flower with tricolpate pollen from the Early Cretaceous (early-middle Albian) of eastern North America. Grana 56: 161–173. DOI:

Friis EM, Mendes MM & Pedersen KR 2018. Paisia, an Early Cretaceous eudicot angiosperm flower with pantoporate pollen from Portugal. Grana 57: 1–15. DOI:

Friis EM, Crane PR & Pedersen KR 2019. Extinct diversity among Early Cretaceous angiosperms: mesofossil evidence of early Magnoliales from Portugal. International Journal of Plant sciences 180: 93–127. DOI:

Gerards T, Damblon F, Wauthoz B & Gerrienne P. 2007. Comparison of cross-field pitting in fresh, dried and charcoalified softwoods. IAWA Journal 28: 49–60. DOI:

Girard V, Breton G, Perrichot V & Bilotte M 2013. The Cenomanian amber of Fourtou (Aude, southern France): Taphonomy and palaeoecological implications. Annales de Paléontologie 99: 301–315. DOI:

Glasspool IJ 2000. A major fire event recorded in the mesofossils and petrology of the Late Permian, Lower Whybrowcoal seam, Sydney Basin, Australia. Palaeogeography, Palaeoclimatology, Palaeoecology 164: 373–396. DOI:

Glasspool IJ 2003a. Hypautochthonous-allochthonous coal deposition in the Permian, South African,Witbank Basin No. 2 seam; a combined approach using sedimentology, coal petrology and palaeontology. International Journal of Coal Geology 53: 81–135. DOI:

Glasspool, IJ 2003b. A review of Permian Gondwana megaspores, with particular emphasis on material collected from coals of the Witbank Basin of South Africa and the Sydney Basin of Australia. Review of Palaeobotany and Palynology 124: 135–227. DOI:

Glasspool IJ, Edwards D & Axe L 2004. Charcoal in the Silurian as evidence for the earliest wildfire. Geology 32: 381–383. DOI:

Glasspool IJ & Scott AC 2010. Phanerozoic concentrations of atmospheric oxygen reconstructed from sedimentary charcoal. Nature Geoscience 3: 627–630. DOI:

Glasspool IJ, Scott AC, Waltham D, Pronina NV & Shao L 2015. The impact of fire on the Late Paleozoic Earth system. Frontiers in Plant Science 6: 756. DOI:

Göeppert HR 1850. Monographie der fossilen Coniferen. Natuurkundige Verhandelingen van de Hollandsche Maatschappij der Wetenschappen te Haarlem 6: 1–286.

Goldin TJ & Melosh HJ 2009. Self-shielding of thermal radiation by Chicxulub impact ejecta: Firestorm or fizzle?. Geology 37: 1135–1138. DOI:

Grauvogel-Stamm L & Ash SR 2005. Recovery of the Triassic land flora from the end Permian life crisis. Comptes Rendus Palevol 4: 525–540. DOI:

Havlik P, Aiglstorfer M, El Atfy H & Uhl D 2013. A peculiar bone-bed from the Norian Stubensandstein (Löwenstein-Formation, Late Triassic) of southern Germany and its palaeoenvironmental interpretation. Neues Jahrbuch für Geologie und Paläontologie-Abhandlungen 269: 321–337. DOI:

He T, Pausas JG, Belcher CM, Schwilk DW & Lamont BB 2012. Fire-adapted traits of Pinus arose in the fiery Cretaceous. New Phytologist 194: 751–759. DOI:

He T, Lamont BB & Manning J 2016. A Cretaceous origin for fire adaptations in the Cape flora. Scientific Reports 6: 1–6. DOI:

Hesselbo SP, Morgans‐Bell HS, McElwain JC, Rees PM, Robinson SA & Ross CE 2003. Carbon‐cycle perturbation in the Middle Jurassic and accompanying changes in the terrestrial paleoenvironment. The Journal of Geology 111: 259–276. DOI:

Holdgate GR, McLoughlin S, Drinnan AN, Finkelman RB, Willett JC & Chiehowsky LA 2005. Inorganic chemistry, petrography and palaeobotany of Permian coals in the Prince Charles Mountains, East Antarctica. International Journal of Coal Geology 63: 156–177. DOI:

Hudspith V, Scott AC, Collinson ME, Pronina N & Beeley T 2012. Evaluating the extent to which wildfire history can be interpreted from inertinite distribution in coal pillars: An example from the Late Permian, Kuznetsk Basin, Russia. International Journal of Coal Geology 89: 13–25. DOI:

Jasper A, Uhl D, Guerra-Sommer M & Mosbrugger V 2008. Palaeobotanical evidence of wildfires in the Late Palaeozoic of South America – Early Permian, Rio Bonito Formation, Paraná Basin, Rio Grande do Sul State, Brazil. Journal of South American Earth Sciences 26: 435–444. DOI:

Jasper A, Manfroi J, Ost Schmidt E, Machado NTG & Uhl D 2011a. Evidências paleobotânicas de incêndios vegetacionais no Afloramento Morro Papaléo, Paleozóico Superior do Rio Grande do Sul, Brasil. Geonomos 19: 18–27.

Jasper A, Uhl D, Guerra-Sommer M, Abu Hamad A & Machado NT 2011b. Charcoal remains from a tonstein layer in the Faxinal Coalfield, Lower Permian, southern Paraná Basin, Brazil. Anais da Academia Brasileira de Ciências 83: 471–481. DOI:

Jasper A, Uhl D, Guerra-Sommer M, Bernardes-de-Oliveira MEC & Machado NTG 2011c. Upper Paleozoic charcoal remains from South America: multiple evidences of fire events in the coal bearing strata of the Paraná Basin, Brazil. Palaeogeography, Palaeoclimatology, Palaeoecology 306: 205–218. DOI:

Jasper A, Guerra-Sommer M, Uhl D, Bernardes-de-Oliveira MEC, Tewari R & Secchi MI 2012. Palaeobotanical evidence of wildfires in the Upper Permian of India: macroscopic charcoal remains from the Raniganj Formation, Damodar Valley Basin. The Palaeobotanist 61: 75–82. DOI:

Jasper A, Guerra-Sommer M, Abu Hamad AMB, Bamford M, Bernardes-de-Oliveira MEC Tewari R & Uhl D 2013. The Burning of Gondwana: Permian fires on the Southern Continent – a palaeobotanical approach. Gondwana Research 24: 148–160. DOI:

Jasper A, Manfroi J, Uhl D, Tewari R, Guerra-Sommer M, Spiekermann R, Osterkamp IC, Bernardes-de-Oliveira MEC, Pires EP & da Rosa AAS 2016a. Indo-Brazilian Late Paleozoic palaeo-wildfires: an overview on macroscopic charcoal remains. Geologia USP, Série Científica 16: 87–97. DOI:

Jasper A, Uhl D, Agnihotri D, Tewari R, Pandita SK, Benicio JRW, Pires EF, da Rosa AAS, Bhat GD & Pillai SSK 2016b. Evidence of wildfire in the Late Permian (Changsinghian) Zewan Formation of Kashmir, India. Current Science 110: 419–423. DOI:

Jasper A, Agnihotri D, Tewari R, Spiekermann R, Pires EF, da Rosa ÁAS & Uhl D 2017. Fires in the mire: repeated fire events in Early Permian ‘peat forming’ vegetation of India. Geological Journal 52: 955–569. DOI:

Jasper A, Uhl D, Benício JRW, Spiekermann R, Brugnera AS, Rockenbach CI, Carniere JS, Pozzebon-Silva A 2020. Wildfires in Late Palaeozoic Strata in Brazil. In: Brazilian Paleofloras: from Paleozoic to Holocene. Eds.: Ianuzzi R, Rössler R, Kunzmann L. Springer Nature. DOI:

Kauffmann M, Jasper A, Uhl D, Meneghini J, Osterkamp IC, Zvirtes G & Pires EF 2016. Evidence for palaeo-wildfire in the Late Permian palaeotropics -charcoal from the Motuca Formation in the Parnaíba Basin, Brazil. Palaeogeography, Palaeoclimatology, Palaeoecology 450: 122–128. DOI:

Kubik R, Uhl D & Marynowski L 2015. Evidence of wildfires during deposition of the Upper Silesian Keuper succession. Annales Societatis Geologorum Poloniae 85: 685–696. DOI:

Kubik R, Marynowski L, Uhl D & Jasper A 2020. Co-occurrence of charcoal, polycyclic aromatic hydrocarbons and terrestrial biomarkers in an early Permian swamp to lagoonal depositional system, Paraná Basin, Rio Grande do Sul, Brazil. International Journal of Coal Geology 230: 103590. DOI:

Kumar M, Tewari R, Chatterjee S & Mehrotra NC 2011. Charcoalified plant remains from the Lashly Formation of Allan Hills, Antarctica: Evidence of forest fire during the Triassic Period. Episodes 34: 109–118. DOI:

Kumar K, Chatterjee S, Tewari R, Mehrotra NC & Singh GK 2013. Petrographic evidence as an indicator of volcanic forest fire from the Triassic of Allan Hills, South Victoria Land, Antarctica. Current Science 104: 422–424.

Kumar M 2018. Evidence of wildfire based on microscopic charcoal, spores and pollen grains from Early Cretaceous sediments of South Rewa and Kachchh basins, India. The Palaeobotanist 67: 147–169. DOI:

Lamont BB & He T 2017. When did a Mediterranean-type climate originate in southwestern Australia? Global and Planetary Change 156: 48–58. DOI:

Lenton TM, Dahl TW, Daines SJ, Mills BJW, Ozaki K, Saltzman MR & Porada P 2016. First plants oxygenated the atmosphere and ocean. Proceedings of the National Academy of Sciences 113: 9704–9709. DOI:

Lu M, Ikejiri T & Lu YH 2021. A synthesis of the Devonian wildfire record: Implications for paleogeography, fossil flora, and paleoclimate. Palaeogeography, Palaeoclimatology, Palaeoecology 571: 110321. DOI:

Manfroi J, Lindner Dutra T, Gnaedinger SC, Uhl D & Jasper A 2015a. The first report of a Campanian palaeo-wildfire in the West Antarctic Peninsula. Palaeogeography, Palaeoclimatology, Palaeoecology 418: 12–18. DOI:

Manfroi J, Uhl D, Guerra-Sommer M, Francischin H, Martinelli AG, Soares MB & Jasper A 2015b. Extending the database of Permian palaeo-wildfire on Gondwana: charcoal remains from the Rio do Rasto Formation (Paraná basin), Middle Permian, Rio Grande do Sul state, Brazil. Palaeogeography, Palaeoclimatology, Palaeoecology 436: 77–84. DOI:

Marynowski L & Simoneit BRT 2009. Widespread Upper Triassic to Lower Jurassic Wildfire Records from Poland: Evidence from Charcoal and Pyrolytic Polycyclic Aromatic Hydrocarbons. Palaios 24: 785–798. DOI:

Marynowski L, Scott AC, Zatoń M, Parent H & Garrido AC 2011. First multi-proxy record of Jurassic wildfires from Gondwana: evidence from the middle Jurassic of the Neuquen basin, Argentina. Palaeogeography Palaeoclimatology Palaeoecology 299: 129–136. DOI:

Marynowski L, Kubik R, Uhl D & Simoneit BRT 2014. Molecular composition of fossil charcoals and its relation to incomplete combustion of wood. Organic Geochemistry 77: 22–31. DOI:

McLauchlan KK, Higuera PE, Miesel J, Rogers BM, Schweitzer J, Shuman, JK, Tepley AJ, Varner JM, Veblen TT, Adalsteinsson SA, Balch JK, Baker P, Batllori E, Bigio E, Brando P, Cattau M, Chipman ML, Coen J, Crandall R, Daniels L, Enright N, Gross WS, Harvey BJ, Hatten JA, Hermann S, Hewitt RE, Kobziar LN, Landesmann JB, Loranty MM, Maezumi SY, Mearns L, Moritz M, Myers JA, Pausas JG, Pellegrini AFA, Platt WJ, Roozeboom J, Safford H, Santos F, Scheller RM, Sherriff RL, Smith KG, Smith MD & Watts A 2020. Fire as a fundamental ecological process: Research advances and frontiers. Journal of Ecology 108: 2047–2069. DOI:

McParland LC, Collinson ME, Scott AC, Steart DC, Grassineaus NV & Gibbons SJ 2007. Ferns and fires: experimental charring of ferns compared to wood and implications for paleobiology, paleoecology, coal petrology and isotope geochemestry. Palaios 22(5): 528–538. DOI:

Mohabey DM, Samant B, Kumar D, Dhobale A, Rudra A & Dutta S 2018. Record of charcoal from early Maastrichtian intertrappean lake sediments of Bagh valley of Madhya Pradesh: palaeofire proxy. Current Science 114: 1540–1544. DOI:

Moroeng O M, Keartland JM, Roberts RJ & Wagner NJ 2018a. Characterization of coal using electron spin resonance: implications for the formation of inertinite macerals in the Witbank Coalfield, South Africa. International Journal of Coal Science and Technology 5: 385–398. DOI:

Moroeng OM, Wagner NJ, Hall G & Roberts RJ 2018b. Using d15N and d13C and nitrogen funcionalities to support a fire origin for certain inertinite macerals in a No. 4 Seam Upper Witbank coal, South Africa. Organic Geochemistry 126: 23–32. DOI:

Muir RA, Bordy EM & Prevec R 2015. Lower Cretaceous deposit reveals first evidence of a post-wildfire debris flow in the Kirkwood Formation, Algoa Basin, Eastern Cape, South Africa. Cretaceous Research 56: 161–179. DOI:

Murthy S, Mendhe VA, Uhl D, Mathews RP, Mishra VK & Gautam S 2021. Palaeobotanical and biomarker evidence for wildfire in the Early Permian (Artinskian) of the Rajmahal Basin, India. Journal of Palaeogeography 10: 1–21. DOI:

Osterkamp IC, De Lara DM, Gonçalves TAP, Kauffmann M, Périco E, Stülp S, Machado NTG, Uhl D & Jasper A 2018. Changes of wood anatomical characters of selected species of Araucaria- during artificial charring - implications for palaeontology. Acta Botanica Brasilica 32(2): 198–211. DOI:

Philippe M, Pacyna G, Wawrzyniak Z, Barbacka M, Boka K, Filipiak P, Marynowski L, Thevenard F & Uhl D 2015. News from an old wood Agathoxylon keuperianum (Unger) nov. comb. In the Keuper of Poland and France. Review of Palaeobotany and Palynology: 221 83–91. DOI:

Retallack GJ, Veevers JJ & Morante R 1996. Global coal gap between Permian–Triassic extinction and Middle Triassic recovery of peat-forming plants. Geological Society of America Bulletin 108: 195–207. DOI:<0195:GCGBPT>2.3.CO;2

Rimmer SM, Hawkins SJ, Scott AC & Cressler WL 2015. The rise of fire: Fossil charcoal in late Devonian marine shales as an indicator of expanding terrestrial ecosystems, fire, and atmospheric change. American Journal of Science 315(8): 713–733. DOI:

Robertson DS, Lewis WM, Sheehan PM & Toon OB 2013. K-Pg extinction: Reevaluation of the heat-fire hypothesis. Journal of Geophysical Research: Biogeosciences 118: 329–336. DOI:

Schönenberger J 2005. Rise from the ashes–the reconstruction of charcoal fossil flowers. Trends in plant science 10: 436–443. DOI:

Scott AC 1989. Observations on the nature and origin of fusain. International Journal of Coal Geology 12: 443–475. DOI:

Scott AC 2000. The pre-Quaternary history of fire. Palaeogeography Palaeoclimatology Palaeoecology 164: 297–345. DOI:

Scott AC 2010. Charcoal recognition, taphonomy and uses in palaeoenvironmental analysis. Palaeogeography Palaeoclimatology Palaeoecology 291: 11–39. DOI:

Scott AC & Glasspool IJ 2006. The diversification of Paleozoic fire systems and fluctuations in atmospheric oxygen concentration. PNAS 103: 10861–10865. DOI:

Scott AC & Glasspool IJ 2007. Observations and experiments on the origin and formation of inertinite group macerals. International Journal of Coal Geology 70: 53–66. DOI:

Scott AC, Galtier J, Gostling NJ, Smith SY, Collinson ME, Stampanoni M, Marone F, Donoghue PCJ & Bengston S 2009. Scanning Electron Microscopy and Synchrotron Radiation X-Ray Tomographic Microscopy of 330 Million Year Old Charcoalified Seed Fern Fertile Organs. Microscopy and Microanalysis 15(2): 166–173. DOI:

Scott AC, Kenig F, Plotnick RE, Glasspool IJ, Chaloner WG & Eble CF 2010. Evidence of multiple late Bashkirian to early Moscovian (Pennsylvanian) fire events preserved in contemporaneous cave fills. Palaeogeography, Palaeoclimatology, Palaeoecology 291: 72–84. DOI:

Scott AC, Bowman DMJS, Bond WJ, Pyne SJ & Alexander ME 2014. Fire on Earth: An introduction. Wiley Blackwell, Chichester: 413 pp.

Shen W, Sun Y, Lin Y, Liu D & Chai P 2011. Evidence for wildfire in the Meishan section and implications for Permian–Triassic events. Geochimica et Cosmochimica Acta 75: 1992–2006. DOI:

Shivanna M, Murthy S, Gautam S, Souza PA, Kavali PS, Bernardes-de-Oliveira MEC & Félix CM 2017. Macroscopic charcoal remains as evidence of wildfire from late Permian Gondwana sediments of India: Further contribution to global fossil charcoal database. Palaeoworld 26: 638-649. DOI:

Skjemstad JO, Clarke P, Taylor JA, Oades JM & McClure SG 1996. The chemistry and nature of protected carbon in soil. Australian Journal of Soil Research 34: 251–271. DOI:

Slater BJ, McLoughlin S & Hilton J 2015. A high-latitude Gondwanan lagerstätte: the Permian permineralised peat biota of the Prince Charles Mountains, Antarctica. Gondwana Research 27: 1446–1473. DOI:

Stein WE, Berry CM, Morris JL, Hernick LV, Mannolini F, Ver Straeten C, Landing E, Marshall JEA, Wellman CH, Beerling DJ & Leake JR 2020. Mid-Devonian Archaeopteris roots signal revolutionary change in earliest fossil forests. Current biology 30: 421–431. DOI:

Sun YZ, Zhao CL, Püttmann W, Kalkreuth W & Qin SJ 2017. Evidence of widespread wildfires in a coal seam from the middle Permian of the North China Basin. The Geological Society of America 9: 595–608. DOI:

Tanner LH, Wang X & Morabito AC 2012. Fossil charcoal from the Middle Jurassic of the Ordos Basin, China and its paleoatmospheric implications. Geoscience Frontiers 3: 493–502. DOI:

Tappert R, Mckellar RC, Wolfe AP, Tappert MC, Ortega-Blanco J & Muehlenbachs K 2013. Stable carbon isotopes of C3 plant resins and ambers record changes in atmospheric oxygen since the Triassic. Geochimica et Cosmochimica Acta 121: 240–262. DOI:

Taylor TN, Taylor EL & Krings M 2009. Paleobotany: the biology and evolution of fossil plants. Elsevier, Amsterdam: 1224 pp.

Uhl D 2020. A reappraisal of the ‘stomach’ contents of the Edmontosaurus annectens mummy at the Senckenberg Naturmuseum in Frankfurt (Germany). Zeitschrift der Deutschen Gesellschaft für Geowissenschaften 171: 71–85. DOI:

Uhl D, Abu Hamad AMB, Kerp H & Bandel K 2007. Evidence for palaeo-wildfire in the Late Permian palaeotropics – charcoalified wood from the Um Irna Formation of Jordan. Review of Palaeobotany and Palynology 144: 221–230. DOI:

Uhl D, Butzmann R, Fischer TC, Meller B & Kustatscher E 2012a. Wildfires in the Late Palaeozoic and Mesozoic of the Southern Alps - The Late Permian of the Bletterbach-Butterloch area (Northern Italy). Rivista Italiana di Paleontologia e Stratigrafia 118: 223–233.

Uhl D, Jasper A & Schweigert G 2012b. Charcoal in the Late Jurassic (Kimmeridgian) of Western and Central Europe - palaeoclimatic and palaeoenvironmental significance. Palaeobiodiversity and Palaeoenvironments 92: 329–341. DOI:

Uhl D, Jasper A & Schweigert G 2012c. Die fossile Holzgattung Agathoxylon Hartig im Nusplinger Plattenkalk (Ober-Kimmeridgium, Schwäbische Alb). Archaeopteryx 30: 16–22.

Uhl D, Hartkopf-Fröder C, Littke R & Kustatscher E 2014. Wildfires in the Late Palaeozoic and Mesozoic of the Southern Alps - The Anisian and Ladinian (Mid Triassic) of the Dolomites (Northern Italy). Palaeobiodiversity and Palaeoenvironments 94: 271–278. DOI:

Uhl D, Jasper A, Schindler T & Wuttke M 2010. Evidence of paleowildfire in the early Middle Triassic (early Anisian) Voltzia Sandstone: the oldest post-Permian macroscopic evidence of wildfire discovered so far. Palaios 25: 837–842. DOI:

Uhl D & Kerp H 2003. Wildfires in the Late Palaeozoic of Central Europe - The Zechstein (Upper Permian) of NW-Hesse (Germany). Palaeogeography, Palaeoclimatology, Palaeoecology 199: 1–15. DOI:

Uhl D, Lausberg S, Noll R & Stapf KRG 2004. Wildfires in the Late Palaeozoic of Central Europe - An overview of the Rotliegend (Upper Carboniferous - Lower Permian) of the Saar-Nahe Basin (SW-Germany). Palaeogeography, Palaeoclimatology, Palaeoecology 207: 23–35. DOI:

Uhl D, Jasper A, Solorzano Kraemer MM & Wilde V 2019. Charred biota from an Early Cretaceous fissure fill in the Sauerland (Rüthen-Kallenhardt, Northrhine-Westphalia, W-Germany) and their palaeoenvironmental implications. Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen 293: 83–105. DOI:

Uhl D, Wuttke M & Jasper A 2020. Woody charcoal with traces of pre-charring decay from the Late Oligocene (Chattian) of Norken (Westerwald, Rhineland-Palatinate, W-Germany). Acta Palaeobotanica 60: 43–50. DOI:

Uhl D & Jasper A 2021. Wildfire during deposition of the “Illinger Flözzone” (Heusweiler-Formation, “Stephanian B”, Kasimovian–Ghzelian) in the Saar-Nahe Basin (SW-Germany). Palaeobiodiversity and Palaeoenvironments 101: 9–18. DOI:

Vajda V, Lyson TR, Bercovici A, Doman J & Pearson DA 2013. A snapshot into the terrestrial ecosystem of an exceptionally well-preserved dinosaur (Hadrosauridae) from the upper Cretaceous of North Dakota, USA. Cretaceous Research 46: 114–122. DOI:

Vajda V, McLoughlin S, Mays C, Frank TD, Fielding CR, Tevyaw A, Lehsten V, Bocking M & Nicoll RS 2020. End-Permian (252 Mya) deforestation, wildfires and flooding - An ancient biotic crisis with lessons for the present. Earth and Planetary Science Letters 529: 115875. DOI:

Valentim B, Algarra M, Guedes A, Ruppert LF & Hower JC 2016. Notes on the origin of copromacrinite based on nitrogen functionalities and δ13C and δ15N determined on samples from the Peach Orchard coal bed, southern Magoffin County, Kentucky. International Journal of Coal Geology 160–161: 63–72. DOI:

Wang D, Mao Q, Dong G, Yang S, LVD & Yin L 2019. The Genetic Mechanism of Inertinite in the Middle Jurassic Inertinite-Rich Coal Seams of the Southern Ordos Basin. Journal of Geological Research 1: 1–15. DOI:

Wang Y, Qin Y, Yang L, Liu S, Elsworth D & Zhang R 2020. Organic Geochemical and Petrographic Characteristics of the Coal Measure Source Rocks of Pinghu Formation in the Xihu Sag of the East China Sea Shelf Basin: Acta Geologica Sinica (English Edition) 94(2): 364–375. DOI:

Wolbach WS, Gilmour I & Anders E 1990. Major wildfires at the Cretaceous-Tertiary boundary. Geological Society of America Special Paper 247: 391–400. DOI:

Wing SL & Tiffney BH 1987. The reciprocal interaction of angiosperm evolution and tetrapod herbivory. Review of Palaeobotany and Palynology 50: 179–210. DOI:

Wing SL, Tiffney BH, Friis EM, Chaloner WG & Crane PR 1987. Interactions of angiosperms and herbivorous tetrapods through time. In The origins of angiosperms and their biological consequences. Cambridge University Press, Cambridge: 203-224.

Xiao L, Zhao Q, Wang J, Mishra V, Arbuzov SI & Zhang M 2020. Wildfire evidence from the Middle and Late Permian Hanxing Coalfield, North China Basin. Geologica Acta 18: 1–11. DOI:

Yan M, Wan M, He X, Hou X & Wang J 2016. First report of Cisuralian (early Permian) charcoal layers within a coal bed from Baode, North China with reference to global wildfire distribution. Palaeogeography, Palaeoclimatology, Palaeoecology 459: 394–408. DOI:

Yan Z, Shao L, Glasspool IJ, Wang J, Wang X & Wan H 2019. Frequent and intense fires in the final coals of the Paleozoic indicate elevated atmospheric oxygen levels at the onset of the End-Permian Mass Extinction Event. International Journal of Coal Geology 207: 75–83. DOI:

Yun Xu, Uhl D, Zhang N, Zhao C, Qin S, Liang H & Sun Y 2020. Evidence of widespread wildfires in coal seams from the Middle Jurassic of Northwest China and its impact on paleoclimate. Palaeogeography, Palaeoclimatology, Palaeoecology 559: 109819. DOI:

Zhang ZH, Wang CS, Dawei LV, William WH, Wang TT & Cao S 2020. Precession-scale climate forcing of peatland wildfires during the early middle Jurassic greenhouse period. Global and Planetary Change 184: 1–13. DOI:

Zodrow EL, D'Angelo JA, Mastalerz M, Cleal CJ & Keefe D 2010. Phytochemistry of the fossilized frond Macroneuropteris macrophylla (Pennsylvanian seed fern, Canada). International Journal of Coal Geology 84: 71–82. DOI:

Zodrow EL, D'Angelo JA, Helleur R & Šimůnek Z 2012. Functional groups and common pyrolysate products of Odontopteris cantabrica (index fossil for the Cantabrian Substage, Carboniferous). International journal of coal geology 100: 40–50. DOI:




How to Cite

Jasper, A., Pozzebon–Silva, Ândrea, Siqueira Carniere, J. ., & Uhl, D. . (2021). Palaeozoic and Mesozoic palaeo–wildfires: An overview on advances in the 21st Century. Journal of Palaeosciences, 70((1-2), 159–172.