Palaeobotanical evidence of wildfire in the Upper Permian of India: Macroscopic charcoal remains from the Raniganj Formation, Damodar Basin

Authors

  • Andre Jasper Centro Universitário UNIVATES, Lajeado, Rio Grande do Sul, Brazil
  • Margot Guerra-Sommer Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
  • Dieter Uhl Senckenberg Forschungsinstitut und Naturmuseum, Frankfurt am Main, Germany and Senckenberg Centre for Human Evolution and Palaeoenvironment, Tübingen University, Tübingen, Germany
  • Mary E.C. Bernardes-de-Oliveira Universidade Guarulhos, Guarulhos, São Paulo, Brazil and Universidade de São Paulo, São Paulo, Capital, Brazil
  • Amit K. Ghosh Birbal Sahni Institute of Palaeobotany, 53 University Road, Lucknow 226007, India
  • Rajni Tewari Birbal Sahni Institute of Palaeobotany, 53 University Road, Lucknow 226007, India
  • Mariela Inês Secchi Centro Universitário UNIVATES, Lajeado, Rio Grande do Sul, Brazil

DOI:

https://doi.org/10.54991/jop.2012.351

Keywords:

Charcoal, Gymnosperm woods, Palaeo-wildfires, Upper Permian, Raniganj Formation, Raniganj Coalfield, Damodar Basin

Abstract

Macroscopic fossil charcoal has been discovered in the carbonaceous shales associated with Seam-VI of Raniganj Formation, Upper Permian, Damodar Basin, India. A pycnoxylic gymnosperm wood is described and confirms the occurrence of palaeo-wildfire in this area during the Late Permian. The integration of the data presented in the current study with previously published data for the Raniganj Formation, principally related to the occurrence of (pyrogenic) inertinites within coal layers, demonstrates that palaeo-wildfires were common events during the deposition of the preserved material. In addition, the presence of charcoal in Permian sediments associated with coal levels at different Gondwana localities demonstrates that wildfires have been relatively common events across the continent during this period.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Bowman DMJS, Balch JK, Artaxo P, Bond WJ, Carlson JM, Cochrane MA, D’Antonio CM, Defries RS, Doyle JC, Harrison SP, Johnston FH, Keeley JE, Krawchuk MA, Kull CA, Marston JB, Moritz MA, Prentice IC, Roos CI, Scott AC, Swetnam TW, Van Der Werf GR & Pyne SJ 2009. Fire in the Earth System. Science 324: 481-484.

DiMichele WA, Hook RW, Nelson WJ & Chaney DS 2004. An unusual Middle Permian flora from the Blaine Formation (Pease River Group: Leonardian-Guadalupian Series) of King County, West Texas. Journal of Paleontology 78: 765-782.

Flannigan MD, Krawchuk MA, Groot WJ de, Wotton BM & Gowman LM 2009. Implications of changing climate for global wildland fire. International Journal of Wildland Fire 18: 483-507.

Gastaldo RA, DiMichele WA & Pfefferkorn HW 1996. Out of the Icehouse into the Greenhouse: a Late Paleozoic Analog for modern global vegetational change. GSA Today 6: 2-7.

Gerards T, Damblon F, Wauthoz B & Gerrienne P 2007. Comparison of cross-field pitting in fresh, dried and charcoalified softwoods. IAWA Journal 28: 49-60.

Ghosh SC 2002. The Raniganj Coal Basin: an example of an Indian Gondwana Rift. Sedimentary Geology 147: 155-176.

Glasspool IJ 2000. A major fire event recorded in the mesofossils and petrology of the Late Permian, Lower Whybrow coal seam, Sydney Basin, Australia. Palaeogeography, Palaeoclimatology, Palaeoecology 164: 373-396.

Glasspool IJ 2003. Hypautochthonous-allochthonous coal deposition in the Permian, South African, Witbank Basin No. 2 seam; a combined approach using sedimentology, coal petrology and palaeontology. International Journal of Geology 53: 81-135.

Hudspith V, Scott AC, Collinson ME, Pronina N & Beeley T 2011. Evaluating the extent to which wildfire history can be interpreted from inertinite distribution in coal pillars: an example from the Late Permian, Kuznetsk Basin, Russia. International Journal of Coal Geology. http://dx.doi.org/10.1016/j.coal.2011.07.009.

Jasper A, Uhl D, Guerra-Sommer M & Mosbrugger V 2008. Palaeobotanical evidence of wildfires in the Late Palaeozoic of South America – Early Permian, Rio Bonito Formation, Paraná Basin, Rio Grande do Sul, Brazil. Journal of South American Earth Science 26: 435-444.

Jasper A, Uhl D, Guerra-Sommer M, Hamad AMBA & Machado NTG 2011a. Charcoal remains from a tonstein layer in the Faxinal Coalfield, Lower Permian, southern Paraná Basin, Brazil. Anais da Academia Brasileira de Ciências 83: 471-48.

Jasper A, Uhl D, Guerra-Sommer M, Bernardes-de-Oliveira MEC & Machado NTG 2011b. Upper Paleozoic charcoal remains from South America: multiple evidences of fire events in the coal bearing strata of the Paraná Basin, Brazil. Palaeogeography, Palaeoclimatology, Palaeoecology 306: 205-218.

Jones TP & Chaloner WG 1991. Fossil charcoal, its recognition and palaeoatmospheric significance. Palaeogeography, Palaeoclimatology, Palaeoecology 97: 39-50.

Jurasky KA 1929. Neue Untersuchungen und Gedanken zur Entstehung fossiler Holzkohle. In: Stutzer O (Editor)—Fusit–Vorkommen, Entstehung und praktische Bedeutung der Faserkohle. Schriften aus dem Gebiet der Brennstoff-Geologie, Verlag von Ferdinand Enke, Stuttgart, Heft, 2: 23-41.

Misra HK, Chandra TK & Verma RP 1990. Petrology of some Permian coals of India. International Journal of Coal Geology 16: 47-71.

Mukhopadhyay G, Mukhopadhyay SK, Roychowdhury M & Parui PK 2010. Stratigraphic correlation between different Gondwana basins of India. Journal of Geological Society of India 76: 251-266.

Murthy S, Chakraborti B & Roy MD 2010. Palynodating of subsurface sediments, Raniganj Coalfield, Damodar Basin, West Bengal. Journal of Earth System Science 119: 701-710.

Navale GKB & Saxena R 1989. An appraisal of coal petrographic facies in Lower Gondwana (Permian) coal seams of India. International Journal of Coal Geology 12: 553-558.

Noll R, Uhl D & Lausberg S 2003. Brandstrukturen an Kieselhölzern der Donnersberg Formation (Oberes Rotliegen, Unterperm) des Saar Nahe Beckens (SW-Deutschland). Veröffentlichungen Museum für Naturkunde Chemnitz 26: 63-72.

Rößler R (Ed.) 2001. Der Versteinerte Wald von Chemnitz. Museum für Naturkunde Chemnitz. 252 pp.

Schopf JM 1975. Modes of fossil preservation. Reviews of Palaeobotany & Palynology 20: 27-53.

Scott AC 1989. Observations on the nature and origin of fusain. International Journal of Coal Geology 12: 443-475.

Scott AC 2000. The pre-quaternary history of fire. Palaeogeography, Palaeoclimatology, Palaeoecology 164: 281-329.

Scott AC 2010. Charcoal recognition, taphonomy and uses in palaeoenvironmental analysis. Palaeogeography, Palaeoclimatology, Palaeoecology 291: 11-39.

Scott AC & Glasspool I 2006. The diversification of Paleozoic fire systems and fluctuation in atmospheric oxygen concentration. PNAS 103: 10861-10865.

Scott AC & Glasspool I 2007. Observations and experiments on the origin and formation of inertinite group macerals. International Journal of Coal Geology 70: 53-66.

Šimùnek Z & Martínek K 2009. A study of Late Carboniferous and Early Permian plant assemblages from the Boskovice Basin, Czech Republic. Review of Palaeobotany & Palynology 155: 275-307.

Singh PK, Prachiti PK, Kalpana MS, Manikyamba C, Singh MP, Lakshminarayana G, Singh AK & Naik AS 2011. Petrographic characteristics and carbon isotopic composition of Permian coal: Implications on depositional environment of Sattupalli Coalfield, Godavari Valley, India. International Journal of Coal Geology. http:/ /dx.doi.org/10.1016/j.coal.2011.10.002.

Taylor GH, Liu S & Diessel CFK 1988. The cold climate origin of inertinite-rich Gondwana coals. International Journal of Coal Geology 11: 1-22.

Tiwari RS & Tripathi A 1992. Marker assemblage zones of spore and pollen species through Gondwana Palaeozoic and Mesozoic sequence in India. Palaeobotanist 40: 194-236.

Uhl D, Abu Hamad AMB, Kerp H & Bandel K 2007. Evidence for palaeo-wildfire in the Late Permian palaeotropics – charcoalified wood from the Um Irna Formation of Jordan. Review of Palaeobotany & Palynology 144: 221-230.

Uhl D, Jasper A, Abu Hamad AMB & Montenari M 2008. Permian and Triassic wildfires and atmospheric oxygen levels. Proceedings from the WSEAS International Conference on Environmental and Geological Science and Engineering, 1, pp. 179-188.

Uhl D & Kerp H 2003. Wildfires in the Late Palaeozoic of Central Europe – The Zechstein (Upper Permian) of NW Hesse (Germany). Palaeogeography, Palaeoclimatology, Palaeoecology 199: 1-15.

Uhl D, Lausberg S, Noll R & Stapf KRG 2004. Wildfires in the Late Palaeozoic of Central Europe – an overview of the Rotliegend (Upper Carboniferous-Lower Permian) of the Saar-Nahe Basin (SW-Germany). Palaeogeography, Palaeoclimatology, Palaeoecology 207: 23-35.

Wang Z & Chen A 2001. Traces of arborescent lycopsids and dieback of the forest vegetation in relation to terminal Permian mass extinction in North China. Review of Palaeobotany & Palynology 117: 217- 243.

Westerling AL, Turner MG, Smithwick EAH, Romme WH & Ryan MG 2011. Continued warming could transform Greater Yellowstone fire regimes by mid-21st century. http://dx.doi.org/10.1073/ pnas.1110199108.

White D 1925. Environmental conditions of deposition of coal. American Institute of Mining, Metallurgy and Engineering Transaction 71: 3-34

Downloads

Published

2012-12-31

How to Cite

Jasper, A., Guerra-Sommer, M., Uhl, D., Bernardes-de-Oliveira, M. E., Ghosh, A. K., Tewari, R., & Secchi, M. I. (2012). Palaeobotanical evidence of wildfire in the Upper Permian of India: Macroscopic charcoal remains from the Raniganj Formation, Damodar Basin. Journal of Palaeosciences, 61((1-2), 75–82. https://doi.org/10.54991/jop.2012.351

Issue

Section

Research Articles

Most read articles by the same author(s)

1 2 3 4 > >>